A simultaneous dispersive liquid-liquid microextraction and GC-MS determination of PCBs and PAHs in nature waters
Abstract
The subject of this study is polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) – super ecotoxicants and widely distributed organic pollutants in natural waters. Their danger lies in acute toxicity, cumulative action, and long-term effects on living organisms. The degree of water ecosystem pollution is assessed based on the levels of indicator compounds, with 16 PAHs and 7 PCBs. Assessing the levels of these super ecotoxicants when they are simultaneously present in natural waters is an urgent task of ecological monitoring in order to obtain reliable information about the pollution level of the water body. The aim of this study is to evaluate the possibility of dispersive liquid-liquid microextraction (DLLME) of PCBs and PAHs and GC-MS determination in natural waters in their simultaneous presence. To achieve the set goal, the peculiarities of simultaneous extraction and determination of PAHs and PCBs from natural waters were studied. The selected range of analyte concentrations was determined based on literature data on environmental monitoring and the maximum allowable concentrations (MAC) of the investigated components in natural waters. The similarity of the applied methods for extraction and detection of PAHs and PCBs allowed for the justification of the approach to selecting a universal sample preparation scheme for simultaneous extraction and GC-MS determination of both classes of analytes. The possibilities of modifications of DLLME extraction of PAHs and PCBs, differing in dispersion method and nature of the extractor, were studied in combination with chromatographic-mass spectrometric determination of the analytes. Simultaneous extraction of super-toxicants was achieved by applying DLLME with a binary dispersant – 500 μl acetone + 500 μl acetonitrile and 150 μl chloroform as the extractor. The chloroform extract after DLLME extraction of the analytes without re-dissolution was used for GC-MS determination of 16 PAHs and 7 PCBs on a specific 60 m long capillary column with a 5% polyarylene + 95% dimethylpolysiloxane stationary phase with gradual heating of the thermostat from 60 to 290°C. Using the selected ion monitoring (SIM) mode increased the reliability of component identification in matrices of natural waters. The possibility of mutual influence of ecotoxicants on their extraction in the presence of each other was studied. Dispersive liquid-liquid microextraction with a binary dispersant provided simultaneous extraction of analytes at a level of 80-97%. The proposed analysis scheme allowed for GC-MS determination of 16 PAHs and 7 PCBs in the presence of each other in natural waters over a wide range of concentrations (0.02-40 μg/L) with an accuracy of 7-18% (PAHs) and 11-18% (PCBs). The relative standard deviations of repeatability and reproducibility for PAHs were in the ranges of 3.1-6.5% and 4.3-7.7%, respectively, and for PCBs 2.8-5.3% and 3.4-6.0%.
Downloads
References
Manodori L., Gambaro A., Piazza R., Ferrari S., Stortini A.M., Moret I., Capodaglio G. PCBs and PAHs in sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy), Mar. Pollut. Bull., 2006; 52(2): 184-192. https://doi.org/10.1016/j.marpolbul.2005.08.017
Verweij F., Booij K., Satumalay K., Van der Molen N., Van der Oost R. As-sessment of bioavailable PAH, PCB and OCP concentrations in water, using semi-permeable membrane devices (SPMDs), sediments and caged carp, Chemosphere., 2004; 54(11): 1675-1689. https://doi.org/10.1016/j.chemosphere.2003.10.002
Yang J., Qadeer A., Liu M., Zhu J.-M., Huang Y.-P., Du W.-N., Wei X.-Y. Oc-currence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai, Appl. Geo-chemistry., 2019; 106: 17-25. https://doi.org/10.1016/j.apgeochem.2019.04.023.
Han D., J. Currell M. Persistent or-ganic pollutants in China's surface water systems, Sci. Total Environ., 2017; 580: 602-625. https://doi.org/10.1016/j.scitotenv.2016.12.007
Yang Y., Chen Z., Zhang J., Wu S., Yang L., Chen L., Shao Y. The challenge of micropollutants in surface water of the Yangtze River, Sci. Total Environ., 2021; 780: 146537. https://doi.org/10.1016/j.scitotenv.2021.146537
SanPiN 1.2.3685-21 Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya che-loveka faktorov sredy obitaniya. Available at: Ofitsial'nyi internet-portal pravovoi informatsii www.pravo.gov.ru. https://docs.cntd.ru/document/573500115. N 0001202102030022. (accessed 3 Febru-ary 2021). (In Russ.)
Environmental Protection Agen-cy. Health Effects Assessment for Polycy-clic Aromatic Hydrocarbons (PAH); EPA 540/l-86-013; Environmental Criteria and Assessment Office: Cincinnati, OH, USA, 1984; 1-61.
Polychlorinated biphenyls and polybrominated biphenyls / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2013: Lyon, France). (IARC monographs on the valuation of carcinogenic risks to humans; vol. 107). 510 p
Guo L., Tan S., Li X., Lee H. K. Fast automated dual-syringe based disper-sive liquid-liquid microextraction coupled with gas chromatography-mass spectrome-try for the determination of polycyclic aromatic hydrocarbons in environmental wa-ter samples, J. Chromatogr. A., 2016; 1438: 1-9. https://doi.org/10.1016/j.chroma.2016.02.008
Liu Q., Xu X., Wang L., Lin L., Wang D. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water, Ecotoxicol. Environ. Saf., 2019; 181: 241-247. https://doi.org/10.1016/j.ecoenv.2019.06.011
Kuzukiran O., Yurdakok-Dikmen B., Totan F. E., Celik C., Orhan E. C., Bilir E. K., Kara E., Filazi A. Analytical Method Development and Validation for Some Persistent Organic Pollutants in Water and Sediments by Gas Chromatography Mass Spectrometry, Int. J. Environ. Res., 2016; 10: 401-410.
PND F 14.1:2:3:4.204-04. Kolichestvennyi khimicheskii analiz vod metodi-ka izmerenii massovykh kontsentratsii khlororganicheskikh pestitsidov i polikhlo-rirovannykh bifenilov v probakh pit'evykh, prirodnykh i stochnykh vod metodom gazovoi khromatografii. Federal'naya slu-zhba po nadzoru v sfere prirodopol'zovani-ya. 2018. 31 p. (In Russ.)
FR. 1.31.2019.33863. Massovaya kontsentratsiya politsiklicheskikh aro-maticheskikh uglevodorodov v probakh pit'evykh, prirodnykh (presnykh i mor-skikh) i ochishchennykh stochnykh vod. Metodika izmerenii metodom gazovoi khromato-mass-spektrometrii. Federal'noe gosudar-stvennoe byudzhetnoe obra-zovatel'noe uchrezhdenie vysshego obra-zovaniya «Kubanskii gosudarstvennyi uni-versitet». 2018. 12 p. (In Russ.)
Ololade I. A., Arogunrerin I. A., Oladoja N. A., Ololade O.O., Alabi A. B. Concentrations and Toxic Equivalency of Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyl (PCB) Con-geners in Groundwater Around Waste Dumpsites in South‑West Nigeria, Arch. Environ. Contam. Toxicol., 2021; 80(1): 134-143. https://doi.org/10.1007/s00244-020-00790-3
Temerdashev Z. Musorina T. Cher-vonnaya T. Arutyunyan Z.V. Possibilities and Limitations of Solid-Phase and Liquid Extraction for the Determination of Poly-cyclic Aromatic Hydrocarbons in Envi-ronmental Samples, J. Anal. Chem., 2021; 76(12): 1357-1370. https://doi.org/10.1134/S1061934821120133
Wolska L., Rawa-Adkonis M., Na-miesnik J. Determining PAHs and PCBs in aqueous samples: finding and evaluating sources of error, Anal. Bioanal. Chem., 2005; 382(6): 1383-1397. https://doi.org/10.1007/s00216-005-3280-7
Lorenzo-Parodi N., Kaziur W., Stojanović N., Jochmann A. M., Torsten C. Schmidt Solventless microextraction tech-niques for water analysis, TrAC., 2019; 113: 321-331. https://doi.org/10.1016/j.aca.2019.08.071
Karacık B., Okay O.S., Henkelmann B., Pfister G., Schramm K.-W. Water con-centrations of PAH, PCB and OCP by using semipermeable membrane devices and sed-iments, Mar. Pollut. Bull., 2013; 70: 258-265. https://doi.org/10.1016/j.marpolbul.2013.02.031
Wang J., Bi Y., Pfister G., Henkel-mann B., Zhu K., Schramm K.-W. Deter-mination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumu-lated by semipermeable membrane devices (SPMD), Chemosphere., 2009; 75(8): 1119-1127. https://doi.org/10.1016/j.chemosphere.2009.01.016.
Pérez-Carrera E., León León V. M., Gómez Parra A., González-Mazo E. Simultaneous determination of pesticides, polycyclic aromatic hydrocar-bons and polychlorinated biphenyls in sea-water and interstitial marine water samples, using stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry, J. Chromatogr. A., 2007; 1170(1-2): 82-90. https://doi.org/10.1016/j.chroma.2007.09.013
Hashemi B., Zohrabi P., Kim K.-H., Shamsipur M., Deep A., Hong J. Recent advances in liquid-phase microextraction techniques for the analysis of environmen-tal pollutants, TrAC., 2017; 97: 83-95. https://doi.org/10.1016/j.trac.2017.08.014
Rezaee M. Assadi Y. Hosseini M.-R.M. Aghaee E. Ahmadi F. Berijani S. De-termination of organic compounds in water using dispersive liquid–liquid microextrac-tion, J. Chromatogr. A, 2006; 1116(1-2): 1-9. https://doi.org/10.1016/j.chroma.2006.03.007
Ozcan S., Tor A., Aydın M.E. De-termination of selected polychlorinated bi-phenyls in water samples by ultrasound-assisted emulsification-microextraction and gas chromatography-mass-selective detec-tion, Anal. Chim. Acta., 2009; 647(2): 182-188. https://doi.org/10.1016/j.aca.2009.06.037
Ozcan S. Analyses of polychlorinat-ed biphenyls in waters and wastewaters us-ing vortex-assisted liquid–liquid microex-traction and gas chromatography-mass spectrometry, J. Sep. Sci., 2011; 34(5): 495-600. https://doi.org/10.1002/jssc.201000623
Yurdakok-Dikmen B., Kuzukiran O., Filazi A., Kara E. Measurement of se-lected polychlorinated biphenyls (PCBs) in water via ultrasound assisted emulsifica-tion–microextraction (USAEME) using low-density organic solvents, J. Water. Health., 2016; 14(2): 214-222. https://doi.org/10.2166/wh.2015.177
Tan, Y.H. Chai, M.K. Wong, L.S. A review on extraction solvents in the disper-sive liquidliquid microextraction, Malays. J. Anal. Sci., 2018; 22(2): 166-174. https://doi.org/10.17576/mjas-2018-2202-01
Farajzadeh M.A., Afshar M.M.R., Aghanassab M. Deep eutectic solvent-based dispersive liquid-liquid microextrac-tion, Anal. Methods., 2016; 8(12): 2576-2583. https://doi.org/10.1039/C5AY03189C
Makos P., Przyjazny A., Boczkaj G. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A, 2018; 1570: 28-37. https://doi.org/10.1016/j.chroma.2018.07.070
Rezaeia F., Bidari A., Birjandi A.P., Hosseini M.R.M., Assadi Y. Development of a dispersive liquid–liquid microextrac-tion method for the determination of poly-chlorinated biphenyls in water, J. Haz-ard. Mater., 2008; 158(2-3): 621-627. https://doi.org/10.1016/j.jhazmat.2008.02.005.
Temerdashev Z., Prasad S., Musori-na T., Chervonnaya T., Arutyunyan Z. Simultaneous Dispersive Liquid–Liquid Microextraction and Determination of Dif-ferent Polycyclic Aromatic Hydrocarbons in Surface Water, Molecules., 2022; 27: 8586. https://doi.org/10.3390/molecules27238586.
Temerdashev Z., Chervonnaya T., Musorina T., Shpigun O. A new scheme of dispersive liquid-liquid microextraction of polychlorinated biphenyls having different degrees of chlorination from waters with subsequent identification by gas chroma-tography coupled with mass spectrometry, Microchem. J., 2023; 194: 109321. https://doi.org/10.1016/j.microc.2023.109321