Quantum-chemical modeling of sorption interactions of histidine enantiomers with carbon nanotubes
Abstract
In this study, the elementary act of adsorption of monomers and dimers of histidine enantiomers on a dextrorotatory model CNT-(7,6) chirality from an aqueous solution was studied using quantum chemistry methods to interpret the adsorption isotherm of L- and D-histidine on carbon nanotubes mkNANO MKN-SWCNT S1 and identify the mechanism of sorption sorbent-sorbate interactions. Quantum chemical modelling of the structures was carried out using the GAUSSIAN 09 program by the B3LYP/6-31G(d,p) GD3 method; the influence of the environment was considered using the Tomasi polarization continuum model (PCM). The results of quantum chemical modelling have established a greater number of point interactions of nitrogen and oxygen atoms of the D-isomer with the dextrorotatory CNT, which determines the higher adsorption energy of the D-histidine monomer and dimer on the CNT compared to the L-isomer. It was shown that enantiomers are attached to nanotubes mainly by van der Waals forces and π-π interactions between the imidazole ring of histidine and the carbon nanotube. The contribution of π-π stacking interactions to the adsorption value was assessed using quantum chemistry methods. The formation of 4 different L-amino acid dimers is possible on the surface of CNT: 2L1, 2L2, 2L3, 2L4 and also for the D isomer: 2D1; 2D2; 2D3; 2D4. The results of quantum chemical modelling showed that dimers 2L4 and 2D4 have the highest adsorption energy on CNT. Quantum chemistry methods were also used to calculate the average energy of intermolecular H bonds in seven, eight, and thirteen particle clusters of L-histidine, as well as in seven- and nine-particle clusters of the D-enantiomer. The calculation showed that this value increases with increasing cluster size. This led to a significant contribution of hydrogen bonding to the decrease in the energy of the sorption system during cluster adsorption.
Downloads
References
Qiu H., Yang J., Structure and properties of carbon nanotubes, Industrial applications of carbon nanotubes, 2017; 47-69. https://doi.org/10.1016/B978-0-323-41481-4.00002-2
Herrera-Herrera A.V., Gonzlez-Curbelo M.Б., Hernndez-Borges J., Rodrguez-Delgado M.B., Carbon nanotubes applications in separation science: A review, Anal. Chim. Acta., 2012; 734: 1-30. https://doi.org/10.1016/j.aca.2012.04.035
Andrе C., Gharbi T., Guillaume Y.C., A novel stationary phase based on amino derivatized nanotubes for HPLC separations: Theoretical and practical aspects, J. Sep. Sci., 2009; 32(10): 1757-1764. https://doi.org/10.1002/jssc.200800683
Chang C., Wang X., Bai Y., Liu H., Applications of nanomaterials in enantioseparation and related techniques, TrAC Trends Anal. Chem., 2012; 39: 195-206. https://doi.org/10.1016/j.trac.2012.07.002
Socas-Rodrguez B., Herrera-Herrera A.V., Asensio-Ramos M., Hernndez-Borges J., Recent applications of carbon nanotube sorbents in analytical chemistry, J. Chromatogr. A., 2014; 1357: 110-146. https://doi.org/10.1016/j.chroma.2014.05.035
De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J., Carbon Nanotubes: Present and Future Commercial Applications, Science, 2013; 339(6119): 535-539. https://doi.org/10.1126/science.1222453
Speltini A., Merli D., Profumo A., Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review, Anal. Chim. Acta., 2013; 783: 1-16. https://doi.org/10.1016/j.aca.2013.03.041
Zhang M., Qiu H., Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography, TrAC Trends Anal. Chem., 2015; 65: 107-121. https://doi.org/10.1016/j.trac.2014.10.008
Speltini A., Merli D., Dondi D., Paganini G., Profumo A. Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase, Anal. Bioanal. Chem., 2012; 403(4): 1157-1165. https://doi.org/10.1007/s00216-011-5606-y
Nguyen L.A., He H., Pham H.C. Chiral drugs: An overview, Int. J. Biomed. Sci., 2006; 2(2): 85-100.
Ankur G., Nirmal M., Surajit K., Harsh R., Nai-Tzu C., Guan-Yu Z., Enantiomeric Recog-nition and Separation by Chiral Nanoparticles, Molecules, 2019; 24(1007): 1-31. https://doi.org/10.3390/molecules24061007
D'yachkov P.N. Uglerodnye nanotrubki. Stroenie, svoistva, primeneniya, BINOM, Labora-toriya znanii, 2006, 293 p. (In Russ.)
Dukovic G., Balaz M., Doak P., Berova N.D., Zheng M., Mclean R.S., Brus L.E., Race-mic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA, Journal of the American Chemical Society, 2006; 128(28): 9004-9005. https://doi.org/10.1021/ja062095w
Akazaki K., Toshimitsu F., Ozawa H., Fujigaya T., Nakashima N., Recognition and one-pot extraction of right-and left-handed semiconducting single-walled carbon nanotube enantiomers using fluorene-binaphthol chiral copolymers, Journal of the American Chemical Society, 2012; 134(30): 12700-12707. https://doi.org/10.1021/ja304244g
Saito R., Jorio A., Hafner J.H., Lieber C.M., Hunter M., McClure T., Dresselhaus G., Dresselhaus M.S., Chirality-dependent G-band Raman intensity of carbon nanotubes, Physical Review B, 2001; 64(8): 085312. https://doi.org/10.1103/PhysRevB.64.085312
Reutov O.A., Kurts A.L., Butin K.P. Organicheskaya khimiya. M., 1999, pt. 2, ch. 8, 624 p. (In Russ.)
Davankov V.A., Navratil Dzh., Uoltol Kh., Ligandoobmennaya khromatografiya, Per. s angl. M., Mir, 1990, 294 p. (In Russ.)
Shpigun O.A., Anan'eva I.A., Budanova N.Yu., Shapovalova E.N., Ispol'zovanie tsi-klodekstrinov dlya razdeleniya enantiomerov, Uspekhi khimii, 2003; 72(12): 1167-1189. https://doi.org/10.1070/RC2003v072n12ABEH000817
Dalgliesh C.E. The optical resolution of aromatic amino-acids on paper chromatograms, J. Chem. Soc., 1952; 137: 3940-3952.
Alain B., Chiral Recоgnition Mechanisms, Analytical chemistry, 2006; 2093-2099.
Ayman L.H., Nenad N., William A.M., Ashraf G., Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals, Nanomaterials, 2017; 7(186): 1-32. https://doi.org/10.3390/nano7070186
Ahmed M., Yajadda M.M.A., Han Z.J., Su D., Wang G., Ostrikov K.K., Ghanem A., Sin-gle-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chroma-tographic separation of racemic pharmaceuticals, Journal of Chromatography A, 2014; 1360: 100-109. https://doi.org/10.1016/j.chroma.2014.07.052
Leon A., Jalbout A.F., Basiuk V.A., SWNT-amino acid interactions: A theoretical study, Chem. Phys. Let., 2008; 457: 185-190. https://doi.org/10.1016/j.cplett.2008.03.079
Vardanega D., Picaud F., Detection of amino acids encapsulation and adsorption with die-lectric carbon nanotube, J. Biotechnology, 2009; 144(2): 96-101. https://doi.org/10.1016/j.jbiotec.2009.08.016
Ganji M.D., Density Functional Theory Based Treatment of Amino Acids Adsorption on Single-Walled Carbon Nanotubes, Diamond & Related Materials, 2009; 18(4): 662-668. https://doi.org/10.1016/j.diamond.2008.11.021
Nechaeva L.S., Butyrskaya E.V., Zapryagaev S.A., Computer simulation of size effects and adsorption properties of one-wall carbon nanotubes (6,6), Russian Journal of General Chem-istry, 2016; 86(7): 1208-1215. (In Russ.)
Butyrskaya E.V., Zapryagaev S.A., Nechaeva L.S., Karpushin A.A., Izmailova E.A., Vliyanie metoda i bazisa rascheta na strukturu i elektricheskie svoistva uglerodnykh nanotrubok (4,4) razlichnoi dliny s otkrytymi kontsami, Zhurnal strukturnoi khimii, 2016; 57(4): 688-696. https://doi.org/10.15372/JSC20160403
Butyrskaya E., Zapryagaev S., Izmailova E., Nechaeva L., Sorption Interactions be-tween L/D-Alanine and Carbon Nanotubes in Aqueous Solutions, J. Phys. Chem. C. 2017; 121(37): 20524-20531. https://doi.org/10.1021/acs.jpcc.7b06849
Nechaeva L.S., Butyrskaya E.V., Zapryagaev S.A., Komp'yuternoe modelirovanie sorbtsii aminokislot na uglerodnykh nanotrubkakh, Zhurnal strukturnoi khimii, 2017; 58(2): 233-241. https://doi.org/10.15372/JSC20170201 (In Russ.)
Le D.T., Butyrskaya E.V., Eliseeva T.V., Sorption interaction between carbon nanotubes and histidine enantiomers in aqueous solutions, Russian Journal of Physical Chemistry A, 2021; 95(11): 2280-2286. DOI: 10.31857/S004445372111011X
Le D.T., Butyrskaya E.V., Eliseeva T.V., Cluster Adsorption of L-Histidine on Carbon Nanotubes in Aqueous Solutions at Different Temperatures, Russian Journal of Physical Chemis-try A, 2022; 96(8): 1719-1723. https://doi.org/10.31857/S004445372208012X
Le D.T., Butyrskaya E.V., Volkov A.A., Gneushev A.S., Study of adsorption of histidine enantiomers on carbon nanotubes in aqueous solution based on different adsorption models, Sorbtsionnye i khromatograficheskie protsessy, 2022; 22(3): 235-242. https://doi.org/10.17308/sorpchrom.2022.22/9330. (In Russ.)
Butyrskaya E.V., Izmailova E.A., Le D.T., Understanding structure of alanine enantiomers on carbon nanotubes in aqueous solutions, Journal of Molecular Structure, 2022; 1259: 132616. https://doi.org/10.1016/j.molstruc.2022.132616
Collins P.G., Defects and disorder in carbon nanotubes, University of California at Irvine, Irvine, USA, 2010, 73 p.
Butyrskaya E.V., Zapryagaev S.A., Izmailova E.A., Cooperative model of the histidine and alanine adsorption on single-walled carbon nanotubes, Carbon, 2019; 143: 276-287. https://doi.org/10.1016/j.carbon.2018.10.086
Butyrskaya E.V., Single-layer cluster adsorption model and its application for the estima-tion of the CO2 structure on metal-organic frameworks, Materials Today Communications, 2022; 33: 104327. https://doi.org/10.1016/j.mtcomm.2022.104327