Liquid chromatography with a free stationary phase in an inorganic analysis
Abstract
Specific features and main milestones in the development and application of liquid chromatography with a free stationary phase (LCFSP) in an inorganic analysis were described. Under the action of an asymmetric field of forces occurring over the course of the planetary movement of the separation column, one of the phases of the two-phase liquid system was held in the column without a special carrier during continuous pumping of the second phase. The combination of the principles of liquid-liquid extraction and chromatography in the LCFSP method allowed concentrating, separating, and isolating target components from various matrices in one cycle. It was noted that in 1986 Russian researchers were the first in the world to suggest the method for separating inorganic substances with similar properties. The brief overview contains information on the equipment required for LCFSP and areas of its application. We also provided examples of how the method can be used in analytical chemistry of inorganic substances (analysis of highly purified materials, separation of rare earth elements, radionuclides, and platinum group metals, analysis of oil and technological solutions). It was shown that LCFSP is a promising method for the analysis of a wide range of samples and can become a reliable tool for analytical chemists.
Downloads
References
Ito Y., Bowman R.L. Countercurrent Chromatography: Liquid-Liquid Partition Chromatography without Solid Support, Science, 1970; 167: 281-283.
Ito Y. Recent advances in counter-current chromatography, J. Chromatogr. A., 1991; 538: 3-25.
Conway W.D. Counter-current chro-matography, J. Chromatogr. A., 1991; 538: 27-35.
Rudenko B.A. 100 let chroma-tographii. M. Nauka Publ., 2003, 739 p. (In Russ.)
Berthod A., Maryutina T., Spivakov B., Shpigun O., Sutherland I. Countercur-rent chromatography in analytical chemis-try (IUPAC technical report), Pure Appl. Chem., 2009; 81(2): 355-387.
Pavlenko I.V., Bashlov V.L., Spiva-kov B.YA., Zolotov YU.A. Zhidkost'-zhidkostnaya khromatografiya so svobod-noy nepodvizhnoy fazoy (khromato-graficheskaya ekstraktsiya) v neorganich-eskom analize. Obzor literatury i eksperi-mental'naya proverka. Zhurn. analit. khimii, 1989; 44(5): 827-833. (In Russ.)
Zolotov Yu.A., Spivakov B.Ya., Maryutina T.A., Bashlov V.L., Pavlenko I.V. Partition countercurrent chromatog-raphy in inorganic analysis, Fresenius J. Anal. Chem., 1989; 335(8): 938-944.
Maryutina T.A., Fedotov P.S., Spivakov B.Ya. Application of Countercurrent Chromatography in Inorganic Analysis. Countercurrent Chromatography. Eds. Menet J.-M., Thiébaut D. Chromatographic Science Series. New York, Marcel Dekker Inc., 1999, Vol. 82. Ch. 6. 171-221.
Chmutova M.K., Maryutina T.A., Spivakov B.Ya., Myasoedov B.F. Razdele-nie ameritsiya (III) i evropiya (III) v sistemakh s nejtral'nymi bidentantnymi fosfororganicheskimim ehkstragentami metodom zhidkostnoj khromatografii so svobodnoj nepodvizhnoj fazoj, Radi-okhimiya, 1992; 34(6): 56-63. (In Russ.)
Knayz’kov N.N., Maryutina T.A. Planetarnayz tcentrifuga dlya metodom zhidkostnoj khromatografii so svobodnoj nepodvizhnoj fazoj, Nauchnoe priboro-stroenie, 2003; 13(3): 52-55. (In Russ.)
. Maryutina T.A., Savonina E.Yu., Fedotov P.S., Smith R.M., Siren H., Hib-bert D.B. Terminology of separation meth-ods (IUPAC recommendations 2017), Pure Appl. Chem., 2018, 90(1): 181-231.
Maryutina T.A., Spivakov B.Ya., Tschopel P. Application of countercurrent chromatography to the purification of chemical reagents, Fresenius J. Anal. Chem., 1996; 356: 430-434.
Ignatova S.N., Maryutina T.A., Spivakov B.Ya., Karandashev V.K. Group separation of trace rare-earth elements by countercurrent chromatography for their determination in high-purity calcium chlo-ride, Fresenius J. Anal. Chem., 2001; 370: 1109-1113.
Spivakov B.Ya., Maryutina T.A., Fedotov P.S., Ignatova S.N., Katasonova O.N., Dahmen J., Wennrich R. Separation of substances in rotating coiled columns: from trace elements to microparticles, J. Anal. Chem., 2002; 57(10): 928-934.
Fedyunina N.N., Fedotov P.S., Filosofov D.V., Yakushev E.A. Opredele-niye ul'tranizkikh soderzhaniy urana i tori-ya v antichnom svintse metodom mass-spektrometrii s induktivno-svyazannoy plazmoy posle ikh vydeleniya metodom zhidkostnoy khromatografii so svobodnoy nepodvizhnoy fazoy, Zavodskaya labora-toriya. Diagnostika materialov, 2018; 84(4): 12-15. (In Russ.)
Fedotov P.S., Fedyunina N.N., Filosofov D.V., Yakushev E.A., Warot G. A novel combined countercurrent chroma-tography – inductively coupled plasma mass spectrometry method for the determi-nation of ultra trace uranium and thorium in Roman lead. Talanta. 2019; 192: 395-399. https://doi.org/10.1016/j.talanta.2018.09.071
Litvina M.N., Malikov D.A., Maryu-tina T.A., Kulyako Yu.M., Myasoedov B.F. Separation of U and Pu by countercurrent chromatography with support-free liquid stationary phase in the TBP-White spirit-nitric acid system, Radiochemistry, 2006; 48(3): 284-287. https://doi.org/10.1134/
S1066362206030143
Litvina M.N., Malikov D.A., Maryu-tina T.A., Kulyako Yu.M., Myasoedov B.F. Separation of U, Pu and Am recovered from mixed oxide (MOX) fuel by counter-current chromatography, Radiochemistry, 2007; 49(2): 162-165. https://doi.org/10.1134/S1066362207020117
Hoshi H., Tsuyoshi A., Akiba K. High-speed countercurrent chromatography for separation of americium from lanthanides, J. Radioanal. Nucl. Chem., 2001; 249(3): 547-550.
Kitazume E., Bhatnagar M., Ito Y. Separation of rare earth elements by high-speed counter-current chromatography, J. Chromatography A., 1991; 538: 133-140.
Nakamura Sh., Hashimoto H., Akiba K. Enrichment separation of rare earth el-ements by high-speed countercurrent chromatography in a multilayer coiled col-umn, J. Chromatogr. A., 1997; 789: 381-387.
Tsuyoshi A., Ogawa H., Akiba K., Hoshi H., Kitazume E. High-speed countercurrent chromatography using a small coiled column, J. Liq. Chrom. Rel. Tech., 2000; 23(13): 1995-2008. https://doi.org/10.1081/JLC-100100468
Maryutina T.A., Savonina E.Y., Katasonova O.N. A combined method of sample preparation for the determination of the element composition of oils, J. Anal. Chem, 2016; 71(11): 1126-1130. https://doi.org/10.1134/S1061934816110101
Maryutina T.A., Soin A.V., Katasonova O.N. Counter-current chromatography for oil analysis: retention features and kinetic effects, J. Chromatogr. A., 2009; 1216(19): 4232-4236. https://doi.org/10.1016/j.chroma.2009.01.080
Maryutina T.A., Soin A.V. Novel Approach to the Elemental Analysis of Crude and Diesel Oil, Anal. Chem., 2009; 81(14): 5896-5901. https://doi.org/10.1021/ac900615t
Soin A.V., Maryutina T.A., Arbuzova T.V., Spivakov B.Ya. Sample preparation in the determination of metals in oil and petroleum products by ICP MS, J. Anal. Chem, 2010; 65(6): 571-576. https://doi.org/10.1134/S1061934810060043
Gottikh R.P., Vinokurov S.F., Pisotskii B.I. Rare-earth elements as geo-chemical criteria of endogenous sources of microelements contained in oil, Dokl. Earth Sci., 2009; 425(1): 325-329. https://doi.org/10.1134/S1028334X09020342
Savonina E.Yu., Maryutina T.A., Katasonova O.N. Determination of microelements in oil by combined sample preparation technique, Inorg. Mater., 2017; 53(14): 1448-1453. https://doi.org/10.1134/S0020168517140151
Savonina E.Yu., Katasonova O.N., Maryutina T.A. Extraction concentration of the acid-soluble forms of rare earth elements from oils of the Volga-Ural petrole-um province using rotating coiled columns, Inorg. Mater., 2022; 58(14): 1479-1483. https://doi.org/10.1134/S0020168522140126
Maryutina T.A. Use of reagent con-centration gradient in the stationary phase for the separation of palladium(II) and rho-dium(III) by countercurrent chromatog-raphy, J. Anal. Chem, 2009; 64(3): 295-298. https://doi.org/10.1134/S1061934809030150
Rudik I.S., Katasonova O.N., Maryutina T.A., Spivakov B.Ya. Sravnitel'nyy analiz razdeleniya platiny(IV) i palladi-ya(II) pri razlichnykh variantakh gradiyentnogo elyuirovaniya, Analitika, 2020; 10(3): 196-203. (In Russ.)
Mokhodoeva O., Rudik I., Shkinev V., Maryutina T. Countercurrent chroma-tography approach to palladium and plati-num separation using aqueous biphasic system, J. Chromatogr. A., 2021; 1657, 462581. https://doi.org/10.1016/j.chroma.2021.462581