Express analysis of acetone in exhaled air for diagnosing diabetes melli-tus

  • Igor A. Platonov Korolev Samara National Research University, Samara
  • Vladimir I. Platonov Korolev Samara National Research University, Samara,
  • Irina N. Kolesnichenko Korolev Samara National Research University, Samara
  • Oleg V. Rodinkov St. Petersburg State University, St. Petersburg
  • Alexander S. Bryksin Korolev Samara National Research University, Samara
  • Asthik E. Margaryan Korolev Samara National Research University, Samara
  • Dmitry L. Kolesnichenko Korolev Samara National Research University, Samara
Keywords: : gas chromatography, non-invasive diagnostics, mobile diagnostic complex, microfluidic systems, bi-omarkers, acetone, diabetes, exhaled air

Abstract

Exhaled air analysis is an actively developing area of medical non-invasive diagnostics, as it does not involve invasive interventions and can be performed repeatedly. It is known that acetone in exhaled air correlates with blood glucose and is a biomarker of diabetes. The use of analytical systems to analyse acetone in exhaled air in medical institutions will allow for the timely diagnosis of pathological changes in blood glucose levels, the early diagnosis of diabetes, and the monitoring of the effectiveness of treatments.

In this study, we described the express analysis of acetone in exhaled air using a mobile diagnostic complex based on microfluidic systems including a PIA gas microchromatograph with a thermochemical detector, a planar chromatographic column, a thermostatically controlled system for the sampling and selective capture of interfering components, operated by electric microvalves, and an automatic dosing system with adjustable blowdown from 0.1 to 5 sec and specialised software. We proposed using a diagnostically significant range of concentrations: from 0.5 ppm to 20 ppm of acetone in exhaled air in the diagnosis of diabetes. The total analysis time is 3 min, retention time for acetone is 60 sec. Testing of the complex confirmed that it allows for the direct determination of acetone in exhaled air. The use of the capture and drying system prevents the loss of the target substance and ensures good convergence of the results. The deviation from the reference value does not exceed 10%. Field testing confirmed the data obtained on model mixtures. The developed mobile diagnostic complex with automatic programmed dosing and the technique for the quantitative determination of acetone in exhaled air (0.5-20 ppm) can be recommended for use in clinical studies in medical institutions.

Downloads

Download data is not yet available.

Author Biographies

Igor A. Platonov, Korolev Samara National Research University, Samara

prof., grand Ph.D  (technical  sciences), Head of the department of chemistry, Samara National Research University, Samara, Russian Federation, e-mail: pia@ssau.ru

Vladimir I. Platonov, Korolev Samara National Research University, Samara,

Ph.D. (chemistry), associate prof., department of Chemistry, Samara National Research University, Russian Federation, e-mail: rovvv@yandex.ru

Irina N. Kolesnichenko, Korolev Samara National Research University, Samara

candidate of Chemical Sciences. Associate Professor of the hemistry Department, Samara National Research University, Samara, Russian Federation,e-mail: irniks@mail.ru

Oleg V. Rodinkov, St. Petersburg State University, St. Petersburg

Doctor of Chemical Sciences, Professor, Professor of the Department of Analytical Chemistry, St. Petersburg State University, St. Petersburg, Russian Federation, e-mail: o.rodinkov@spbu.ru

Alexander S. Bryksin, Korolev Samara National Research University, Samara

the postgraduate student of the Department of Chemistry, Samara National Research University, Samara, Russian Federation, Е-mail: 79376442669@yandex.ru

Asthik E. Margaryan, Korolev Samara National Research University, Samara

the postgraduate student of the Department of Chemistry, Samara National Research University, Samara, Russian Federation, e-mail: asyaigithanyan@mail.ru

Dmitry L. Kolesnichenko, Korolev Samara National Research University, Samara

graduate student of the Department of Chemistry, Samara National Research University named after Academician S.P. Queen, Samara, Russian Federation, e-mail: irniks@mail.ru

References

Phillips M. Breath test in medicine. Sci. Am. 1992; 267: 74-79.

Phillips M. Method for the Collec-tion and Assay of Volatile Organic Com-pounds in Breath. Analytical Biochemistry. 1997; 247(2): 272-278.

Stepanov E.V. Metody vysoko-chuvstvitel'nogo gazovogo analiza mole-kul-biomarkerov v issledovaniyah vydy-haemogo vozduha. Trudy Instituta obshchej fiziki im. A.M. Prohorova. 2005; 61: 5-47. (In Russ.)

Sagnik Das, Mrinal Pal. Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehen-sive Review. Journal of The Electrochemi-cal Society. 2020; 16(3): 037562.

Kopylov F.Yu., Syrkin A.L., Chomahidze P.Sh., Bykova A.A., Shaltaeva Yu.R., Belyakov V.V., Pershenkov V.S., Samotaev N.N., Golovin A.V., Vasil'ev V.K., Malkin E.K., Gromov E.A., Ivanov I.A., Lipatov D.YU., YAkovlev D.YU. Per-spektivy diagnostiki razlichnyh zabolevanij po sostavu vydyhaemogo vozduha. Klinicheskaya medicina.2013; 10: 16-21. (In Russ.)

Shcherbakova N.V., Nacharov P.V., Yanov Yu.K. Analiz gazovogo sostava vydyhaemogo vozduha v diagnostike zabolevanij. Ros. otorinolaringologiya. 2005; 4(17): 1260-32. (In Russ.)

Gorbunov I.S., Gubal' A.R., Ganeev A.A., Rodinkov O.V., Karcova L.A., Bes-sonova E.A., Arsen'ev A.I., Nefedov A.O., Kraeva L.A. Optimizaciya uslovij analiza vydyhaemogo vozduha metodom gazovoj hromatografii–mass-spektrometrii dlya celej neinvazivnoj diagnostiki raka legkih. ZHurnal analiticheskoj himii. 2019; 74(11): 870-880.

Gashimova E.M., Temerdashev A.Z., Porhanov V.A., Polyakov I.S., Pe-runov D.V. Letuchie organicheskie soedi-neniya v vydyhaemom vozduhe kak bi-omarkery raka legkih. Dostizheniya i vozmozhnye problem. ZHurnal analitich-eskoj himii. 2022; 77(7): 585-615. (In Russ.)

Ganeev A.A., Gubal A.R., Luky-anov G.N. etc. Analysis of exhaled air for early-stage diagnosis of lung cancer: op-portunities and challenges. Russ Chem Rev. 2018; 87(9): 904-921. (In Russ.)

Buszewski B., Kesy M., Ligor T., Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed. Chroma-togr. 2007; 21(6): 553-566.

Amann A., Spanel P., Smith D. Breath Analysis: The Approach Towards Clinical Applications. Mini Rev Med Chem. 2007; 7(2): 115-129.

Issitt Th., Wiggins L., Veysey M., Sweeney S. T., Brackenbury W. J., Rede-ker K. Volatile compounds in human breath: critical review and meta-analysis. Journal of Breath Research. 2022; 16(2): 024001.

Miekisch W., Schubert J.K., No-eldge-Schomburg G.F.E. Diagnostic poten-tial of breath analysis-focus on volatile or-ganic compounds. Clin Chim Acta. 2004; 347(1-2): 25-39.

Platonov, I. A., Kolesnichenko, I. N., Pavlova, L. V., Muhanova, I. M., & Pla-tonov, V. I. A mobile diagnostics suite for the express quantitative determination of acetine in exhaled breath. Sorbtsionnye I Khromatograficheskie Protsessy, 2022; 22(4): 365-376. https://doi.org/10.17308/sorpchrom.2022.22/10563 (In Russ.)

Deng C., Zhang J., Yu X., Zhang W., Zhang X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextrac-tion with on-fiber derivatization. J. Chro-matogr. B. 2004; 810: 269-275.

Lubes G., Goodarzi M. GC-MS based metabolomics used for the identifica-tion of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018; 147: 313-322.

Malysheva A.O., Baldin M.N., Gruznov V.M., Blinova L.V. Vnelabora-tornyj ekspressnyj gazohromatograficheskij metod analiza vydyhaemogo chelovekom vozduha s avtomatizirovannoj gradui-rovkoj. Analitika i kontrol'. 2018; 22(2): 177-185. (In Russ.)

Španěl R., Smith D. Volatile com-pounds in health and disease. Current Opinion in Clinical Nutrition and Metabol-ic Care. 2011; 14(5): 455-460.

Smith D., Španěl P., Herbig J., Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J. Breath Res. 2014; 8(2): 027101.

Gashimova E.M., Temerdashev A.Z., Porhanov V.A., Polyakov I.S., Pe-runov D.V., Azaryan A.A., Dmitrieva E.V. Ocenka vozmozhnosti gazohromato-graficheskogo opredeleniya letuchih or-ganicheskih soedinenij v vydyhaemom vozduhe dlya neinvazivnoj diagnostiki raka legkih. ZHurnal analiticheskoj himii. 2019; 74(5): 365-372. (In Russ.)

Gashimova E.M., Temerdashev A.Z., Porhanov V.A., Polyakov I.S., Pe-runov D.V., Azaryan A.A., Dmitrieva E.V. Primenenie analiza vydyhaemogo vozduha dlya identifikacii markerov raka legkih. Zlokachestvennye opuholi. 2019; 9(3S1): 66. (In Russ.)

Gorbunov I.S., Gubal' A.R., Ganeev A.A., Rodinkov O.V., Karcova L.A., Bes-sonova E.A., Arsen'ev A.I., Nefedov A.O., Kraeva L.A. Optimizaciya uslovij analiza vydyhaemogo vozduha metodom gazovoj hromatografii–mass-spektrometrii dlya celej neinvazivnoj diagnostiki raka legkih. ZHurnal analiticheskoj himii. 2019; 74(11): 870-880. (In Russ.)

Xiao-An Fu, Mingxiao Li, Knipp R.J, Nantz M.H, Bousamra M. Noninvasive detection of lung cancer using exhaled breath. Cancer Med. 2014; 3(1): 174-181.

Fedrigo M., Hoeschen C., Oeh U. Multidimensional statistical analysis of PTR-MS breath samples: A test study on irradiation detection. Int. J. Mass Spectrom. 2010; 295: 13-20.

Righettoni M., Schmid A., Amann A., Pratsinis S.E. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J. Breath Res. 2013; 7: 037110.

Lapthorn C., Pullen F., Chowdhry B.Z. Ion mobility spectrometry-massspectrometry (IMS-MS) of small mol-ecules: Separating and assigning structures to ions. Mass Spectrom. Rev. 2013; 32: 43-71.

Malinovskaya L.K., CHomahidze P.SH., Bykova A.A., SHaltaeva YU.R., Belyakov V.V., Golovin A.V., Pershenkov V.S., Syrkin A.L., Betelin V.B., Kopylov F.YU. Protonnaya mass-spektrometriya vydyhaemogo vozduha v diagnostike hronicheskoj serdechnoj nedostatochnosti s sohrannoj frakciej vybrosa. Kardiologiya i serdechno-sosudistaya hirurgiya. 2018; 11(6): 45-51. (In Russ.)

Szymanska, E., Tinnevelt G.H., Brodrick E., Williams M., Davies A.N., Van Manen H.-J., Buydens L.M.C. Increas-ing conclusiveness of clinical breth analy-sis by improved baseline correction of mul-ti capillary column – ion mobility spec-trometry (MCC-IMS) data. J. Pharm. Bio-med. Anal. 2016; 127: 170175.

Michalcikova R.B., Dryahina K., Spanel P. SIFT-MS quantification of sever-al breath biomarkers of inlammatory bowel disease, IBD; A detailed study of the ion chem-istry. Int. J. Mass Spectrom. 2016; 396: 35-41.

Smith D., Spanel P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. TrAC. 2011; 30: 945-959.

Španěl P., Smith D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clin. Mass Spectrom. 2020; 16: 18-24.

Rydosz A., Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring. Sen-sors (Basel). 2018; 18(7): 2298.

Arsen'ev A.I., Nefedova A.V., Ganeev A.A., Nefedov A.O., Novikov S.N., Barchuk A.A., Kanaev S.V., Dzhagac-panyan I.E., Gubal' A.R., Kononov A.S., Tarkov S.A., Aristidov N.YU. Kom-binirovannaya rannyaya diagnostika raka lyogkih opredeleniem sostava vydy-haemogo vozduha neselektivnym metodom analiza letuchih organicheskih soedinenij s ispol'zovaniem metallooksidnyh sensorov s perekrestnoj chuvstvitel'nost'yu i citolog-icheskim issledovaniem mokroty. Voprosy onkologii. 2020; 66(4): 381-384. (In Russ.)

Ryabtsev S.V., Shaposhnick A.V., Lukin A.N., Domashevskaya E.P. Applica-tion of semiconductor gas sensors for med-ical diagnostics. Sensors and Actuators B: Chemical. 1999; 59(1): 26-29. (In Russ.)

Shaposhnik A., Zviagin A., Sizask E., Vasiliev A. Acetone and Ethanol Selec-tive Detection by a Single MOX-sensor. Procedia Engineering. 2014; 87: 1051-1054.

Zvyagin A.A., SHaposhnik A.V., Ryabcev S.V., SHaposhnik D.A., Vasil'ev A.A., Nazarenko I.N. Opredelenie parov acetona i etanola poluprovodnikovymi sen-sorami. ZHurnal analiticheskoj himii. 2010; 65(1): 96-100. (In Russ.)

Saasa V., Malwela Th., Beukes M., Mokgotho M., Liu Ch.-P., Mwakikunga B. Sensing Technologies for Detection of Ac-etone in Human Breath for Diabetes Diag-nosis and Monitoring. Diagnostics. 2018; 8: 12. https://doi.org/10.3390/diagnostics8020012

Hashoul D., Haick H. Sensors for detecting pulmonary diseases from exhaled breath. Eur Respir Rev. 2019; 28: 190011.

Saidi T., Zaim O., Moufid M., Bari N.E., Ionescu R., Bouchikhi B. Exhaled breath analysis using electronic nose and gas chromatography-mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy sub-jects. Sens. Actuators B. 2018; 257: 178-188.

Van de Goor R., van Hooren M., Dingemans A.-M., Kremer B., Kross K. Training and Validating a Portable Elec-tronic Nose for Lung Cancer Screening. J. Thorac. Oncol. 2018; 13: 676-681.

Kononov A., Gubal A., Gorbunov I., Chuchina V., Ganeev A., Korotetsky B., Ivanenko N., Stolyarova N., Jahatspanian I., Kozyrev K., Vasiliev A., Rassadina A., Arsenjev A., Barchuk A., Nefedov A., Iakovleva E., Sillanpaä M., Safaei Z. Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. Journal of Breath Research. 2020; 14(1): 016004.

Nazarov V.E., Karaseva G.T., Uspenskij Yu.P., Dzhagacpanyan I.E. Ocenka riska patologicheskih sostoyanij s pomoshch'yu analiza gazovogo sostava vydyhaemogo vozduha. Vestnik SPbGU. 2013; 11(4): 218-225. (In Russ.)

Pavord D., Shaw D. E., Gibson P.G., Taylor D. R. Inflammometry to assess air-way diseases. The Lancet. 2008; 372(9643): 1017-1019.

Dettmer K., Engewald W. Adsor-bent materials commonly used in air analy-sis for adsorptive enrichment and thermal desorption of volatile organic compounds. Analytical and Bioanalytical Chemistry. 2002; 373(6): 490-500.

Kang S. How long may a breath sample be stored for at -80°C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax: Carbograph trap adsorbent bed from exhaled breath. Journal of Breath Research. 2016; 10(2): 026011.

Harshman S. Storage stability of exhaled breath on Tenax TA. Journal of Breath Research. 2016; 10(4): 046008. https://doi.org/10.1088/1752-7155/10/4/046008

Harshman S.W., Pitsch R L., etc. Evaluation of a Standardized Collection Device for Exhaled Breath Sampling onto Thermal Desorption Tubes. Journal of Breath Research. 2020; 14(3): 036004.

Van der Schee M.P. Effect of trans-portation and storage using sorbent tubes of exhaled breath samples on diagnostic accu-racy of electronic nose analysis. Journal of Breath Research. 2013. 7(1):016002. https://doi.org/10.1088/1752-7155/7/1/016002

Grote C. Solid-phase microextrac-tion for the analysis of human breath. Ana-lytical Chemistry. 1997; 69(4): 587-596.

Vas G., Vékey K. Solid–phase mi-croextraction: a powerful sample prepara-tion tool prior to mass spectrometric analy-sis. Journal of Mass Spectrometry. 2004; 39(3): 233-254.

Mieth M. Multibed Needle Trap Devices For on Site Sampling and Precon-centration of Volatile Breath Biomarkers. Analytical Chemistry. 2009; 81(14): 5851-5857.

Di Gilio A., Palmisani J., Ventrella G., Facchini L., Catino A., Varesano N., Pizzutilo P., Galetta D., Borelli M., Barbie-ri P., Licen S., de Gennaro G. Breath Anal-ysis: Comparison among Methodological Approaches for Breath Sampling. Mole-cules. 2020; 25(24): 5823.

Miekisch W., Schubert J.K., No-eldge-Schomburg G.F.E Diagnostic poten-tial of breath analysis–focus on volatile or-ganic compounds. Clinica Chimica Acta. 2004; 347: 25-39.

O'Hara M.E., 'Hehir S.O., Green S., Mayhew C.A. Development of a protocol to measure volatile organic compounds in human breath: a comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry. Physi-ological Measurement. 2008; 29(3): 309-330.

Amann A., Miekisch W., Pleil J.D., Risby T., Schubert J. Methodological Issues of Sample Collection and Analysis of Exhaled Breath. Science Inventory. 2010; 49: 96-114.

Bingi V.N., Stepanov E.V., Chucha-lin A.G. Vysokochuvstvitel'nyj analiz NO, NH3 i CH4 v vydyhaemom vozduhe s pomoshch'yu perestraivaemyh diodnyh lazerov. Tr. In-ta obshchej fiziki im. A.M. Prohorova. 2005; 61: 189-204. (In Russ.)

Anderson J. Modeling soluble gas exchange in the airways and alveoli. Annals of Biomedical Engineering. 2003; 31: 1402-1422.

Schubert J. CO2 – controlled sam-pling of alveolar gas in mechanically venti-lated patients. Journal of Applied Physiol-ogy. 2001; 90(2): 486-492.

Schubert J. In vivo evaluation of a new method for chemical analysis of vola-tile components in the respiratory gas of mechanically ventilated patients. Technol Health Care. 1999; 7(1): 29-37.

Sukul P. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests. Scientific Reports. 2016; 6: 28029.

Dweik R. An Official ATS Clinical Practice Guideline: Interpretation of Ex-haled Nitric Oxide Levels (FENO) for Clin-ical Applications. American Journal of Respiratory and Critical Care Medicine. 2011; 184(5): 602-615.

Sukul P. Immediate effects of breath holding maneuvers onto composi-tion of exhaled breath. Journal of Breath Research. 2014; 8(3): 037102. https://doi.org/10.1088/1752-7155/8/3/037102

Toyooka T., Hiyama Syu, Yamada Y. A prototype portable breath acetone an-alyzer for monitoring fat loss. J. Breath Res. 2013; 7(3): 036005.

Harshman S.W., Pitsch R.L., Da-vidson C.N. Evaluation of a Standardized Collection Device for Exhaled Breath Sampling onto Thermal Desorption Tubes. Journal of Breath Research. 2020; 14(3): 036004. https://doi.org/10.1088/1752-7163/ab7e3b

Pribor dlya otbora prob vydy-haemogo vozduha Mistral [Elektronnyj resurs]: spravochnye dannye / URL: https://www.mistral-breath.it/en/mistral/

Pribor dlya otbora prob vydy-haemogo vozduha ReCIVA [Elektronnyj resurs]: spravochnye dannye / URL: https://www.owlstonemedical.com/.

Baldin M.N., Simakov V.A., Gruz-nov V.M., Moshkin M.P., Kozlov V.A., Firsov A.P. Probootbornik dlya gazovogo analiza vydyhaemogo vozduha. // Patent na poleznuyu model' RU 117078 U1, 20.06.2012. Zayavka № 2012106953/15 ot 27.02.2012.

Zolotov YU.A. Perspektivy razviti-ya analiticheskoj himii. ZHurnal analitich-eskoj himii. 2019; 74(9): 3-4. (In Russ.)

Cizin G.I., Zolotov YU.A. Kakie analiticheskie pribory proizvodyat v Ros-sii? ZHurnal analiticheskoj himii. 2021; 76(4): 369-379. (In Russ.)

YAshin YA.I., YAshin A.YA. Nau-kometricheskoe issledovanie sostoyaniya i tendencij razvitiya metodov hromatografii i apparatury. V kn.: 100 let hromatografii Otv. red. B.A.Rudenko. M., Nauka, 2003: 898-936. (In Russ.)

YAshin YA.I., YAshin A.YA. Sos-toyanie hromatograficheskogo priboro-stroeniya. Zav.Lab, 2003; 69(3): 19-31. (In Russ.)

Kolesnichenko I.N., Platonov I.A., Platonov V.I. Mikroanaliticheskie sistemy dlya opredeleniya endogennyh bi-omarkerov v vydyhaemom vozduhe. Sov-remennaya nauka: aktual'nye problemy i puti ih resheniya. 2016;1(23): 41-46. (In Russ.)

Malysheva A.O., Baldin M.N., Gruznov V.M., Blinova L.V. Vnelabora-tornyj ekspressnyj gazohromatograficheskij metod analiza vydyhaemogo chelovekom vozduha s avtomatizirovannoj graduirovkoj. Analitika i kontrol'. 2018; 22(2): 177-185. (In Russ.)

Platonov I.A., Kolesnichenko I.N., Novikova E.A., Pavlova L.V. Ispol'zovanie sorbcionnyh mikrosistem dlya sozdaniya obrazcov sostava letuchih organicheskih soedinenij. Izmeritel'naya tekhnika. 2019; 7: 62-66. (In Russ.)

Kulikov V.Yu., Ruyatkina L.A., So-rokin M.Yu., SHabanova E.S., Baldin M.N., Gruznov V.M., Efimenko A.P., Pe-trovskij D.V., SHnajder E.P., Moshkin M.P. Vzaimosvyaz' mezhdu soderzhaniem v vydyhaemom vozduhe acetona i osoben-nostyami metabolicheskih narushenij u bol'nyh saharnym diabetom pervogo i vtorogo tipov. Medicina i obrazovanie v Sibiri: elektronnyj nauchnyj zhurnal. 2011; 1: 1-12. (In Russ.)

Rydosz A.A. Negative correlation between blood glucose and acetone meas-ured in healthy and type-1 diabetes melli-tus patient breath. J. Diabetes Sci. Technol. 2015; 9: 881-884.

Amann A.; Smith D. Volatile Bi-omarkers. In Non-Invasive Diagnosis in Physiology and Medicine. Elsevier BV. 2013. 568 p.

Rodinkov O.V., Zhuravlyova G.A., Vaskova E. A., Platonov I.A. Potassium Fluoride as a Selective Moisture Trapping Agent for SPE-TD-GC-FID Determination of Volatile Organic Compounds in the Air. Analytical Methods. 2015; 7(2): 458-465.

Kolesnichenko I.N., Anikina M.A., Platonov I.A. Optimisation of the condi-tions for the saturation and preparation of chromato-desorption microsystems for the production of acetone gas mixtures. Sorbtsionnye I Khromatograficheskie Protsessy, 2020; 20(4): 426-433. https://doi.org/10.17308/sorpchrom.2020.20/2949 (In Russ.)

Gorbacheva A.R., Rodinkov O.V. Hromatomembrannoe generirovanie standartnyh gazovyh smesej letuchih or-ganicheskih soedinenij na urovne ppm. Analitika i kontrol'. 2018; 22(3): 267-272. (In Russ.)

Malysheva A.O., Baldin M.H., Gruznov B.M. Opredelenie koefficientov raspredeleniya letuchih organicheskih veshchestv v sisteme zhidkost'-vozduh dlya sozdaniya graduirovochnyh gazoobraznyh obrazcov so sledovymi koncentraciyami veshchestv. ZHurnal analiticheskoj himii. 2017; 72(10): 867-871. (In Russ.)

Vitenberg A.G., Konopel'ko L.A. Parofaznyj gazohromatograficheskij analiz: metrologicheskie prilozheniya. ZHurnal analiticheskoj himii. 2011; 66(5): 452-472. (In Russ.)

Vitenberg A.G. Staticheskij parofaznyj gazohromatograficheskij analiz. Fiziko-himicheskie osnovy i oblasti prime-neniya. Ros.him.zhurnal. 2003; 57(1): 7-22. (In Russ.)

Margaryan A.E., Platonov I.A., Kolesnichenko I.N., Novikova E.A., Karsunkina A.S. Planar microfluid concen-trators based on silagerm 8040 for sam-pling and sample preparation for the analy-sis of gas media. Sorbtsionnye I Khromato-graficheskie Protsessy. 2023; 23(5): 732-740. https://doi.org/10.17308/sorpchrom.2023.23/11691. (In Russ.)

Published
2024-05-28
How to Cite
Platonov, I. A., Platonov, V. I., Kolesnichenko, I. N., Rodinkov, O. V., Bryksin, A. S., Margaryan, A. E., & Kolesnichenko, D. L. (2024). Express analysis of acetone in exhaled air for diagnosing diabetes melli-tus. Sorbtsionnye I Khromatograficheskie Protsessy, 24(2), 180-196. https://doi.org/10.17308/sorpchrom.2024.24/12124