Theoretical calculation of the parameters of the three-parameter chromatographic phase characterization method I. Dispersion forces parameter – generalized charge

  • Elena A. Zaitceva Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow
  • Anatoliy M. Dolgonosov Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow
Keywords: adsorption energy, intermolecular interactions, gas chromatography, stationary phase, generalised charge, mo-lecular descriptors

Abstract

In this work we studied the flavonoid composition of tangerine skins using 10 kinds of tangerines from the selectivity of separation in gas chromatography is determined by the nature of the stationary phase. The authors previously proposed a model of intermolecular interactions and a theoretical method of three-parameter characterisation of stationary phases in liquid chromatography based on it. They were applied to quantify the ability of molecules to participate in dispersion and dipole-dipole interactions and hydrogen bonds. The method proved to be efficient to describe the properties of stationary phases based on hydrocarbons, polyethylene glycol, polysiloxanes, and ionic liquids. The properties of stationary phases and analyte molecules are described by two selectivity characteristics: polarity and hydrophilicity, which can be calculated as a direct problem using the structural formula of the substance, or as an inverse problem using experimental data in the form of the Kovacs retention indices or Rohrschneider and McReynolds constants. No contradictions have been found between the characteristics calculated by the two methods. Using the proposed method, the relationship between the molecular weight of the polymer molecule and the values of selectivity characteristics was revealed. We proposed a selectivity map as a convenient and illustrative way to classify the stationary phases. Backed by the principle of similarity of properties, it can be used to determine the most selective stationary phase for a given analyte, without any experiments.

The aim of this work was to determine the generalised charge as the first and key parameter of the three-parameter characterisation method. The main tool was the theory of generalised charges developed earlier in the laboratory of sorption methods of GEOKHI RAS. This theory, derived from fundamental principles, describes van der Waals interactions in the form of a Lennard-Jones potential, using the characteristics of molecules determined from their molecular structure. Previously, it successfully described nonpolar chromatographic systems. In the present study, we defined generalised charges, showed their relation to physical and experimental values, and provided calculation formulas for isolated molecules and for liquid phases. We presented the results of a detailed calculation of the generalised charges of substances of different classes, including gas chromatographic stationary phases.

Downloads

Download data is not yet available.

Author Biographies

Elena A. Zaitceva, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow

Ph.D., Senior scientific fellow, Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences (GEOKHI RAS), Moscow, Russian Federation, e-mail: zaitceva@geokhi.ru

Anatoliy M. Dolgonosov, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow

Dr. sci. (chem), Leading scientific fellow, Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences (GEOKHI RAS), Moscow, Russian Federation, email: amdolgo@mail.ru

References

Dolgonosov A.M., Zaitceva E.A. Kha-rakteristika polyarnosti nepodvizhnoj fazy v gazovoj chromatografii na osnove teoretich-eskogo opisaniya mezhmolekulyarnyh vzai-modejstvij. I. Sluchaj otsutstviya vodorodnyh svyazej. Sorbtsionnye I khromatograficheskiye protsessy. 2014; 14(4): 578-590. (In Russ.)

Dolgonosov A.M., Zaitceva E.A. Kha-rakteristika polyarnosti nepodvizhnoj fazy v gazovoj chromatografii na osnove teoretich-eskogo opisaniya mezhmolekulyarnyh vzai-modejstvij. II. Sluchaj vodorodnyh svyazej. Sorbtsionnye I khromatograficheskiye protsessy. 2015; 15(3: 321-320. (In Russ.)

Zaitceva E.A., Dolgonosov A.M. Teoret-icheskaya ocenka kharakteristik selektivnosti gazochromatograficheskih nepodvizhnyh faz. Sorbtsionnye I khromatograficheskiye protsessy, 2018; 18 (5): 676-689. (In Russ.)

Zaitceva E.A., Dolgonosov A.M. Trekhparametricheskaya model' mezhmole-kulyarnyh vzaimodejstvij kak osnova dlya klassifikacii i vybora nepodvizhnyh faz dlya gazovoj chromatografii. Sorbtsionnye I khro-matograficheskiye protsessy, 2019; 19(5): 525-541. (In Russ.)

Dolgonosov A.M. Polyarnost' i gidro-fil'nost' — fundamental'nye nezavisimye kha-rakteristiki chromatograficheskih nepodvizhnyh faz. Sorbtsionnye I khromatograficheskiye protsessy, 2015; 15(3): 312-320. (In Russ.)

Dolgonosov A.M., Zaitceva E.A. A mod-el of intermolecular interaction associated with hydrogen bond formation and its application to the characterization of the selectivity of chro-matographic phases on the example of polyeth-ylene glycols. Journal of Structural Chemis-try, 2020; 61: 1233-1243.

Dolgonosov A.M., Zaitceva E.A. Factors determining the selectivity of stationary phases for geometric isomers of fatty acids in gas–liquid chromatographic analysis. Journal of Analytical Chemistry, 2020; 75: 1599-1607.

Dolgonosov A.M., Zaitceva E.A. Selec-tivity map of stationary phases: a graphical method for systematizing and searching for conditions for the gas chromatographic separa-tion of polar substances. Journal of Analytical Chemistry, 2021; 76: 898-906.

Zaitceva E.A., Dolgonosov A.A., Dol-gonosov A.M. Theoretical characterization of ionic liquids as stationary phases for gas chro-matography. Sorbtsionnye I khromatografich-eskiye protsessy, 2022; 22(5): 598-611. (In Russ.)

Zaitceva E.A., Dolgonosov A.M. Meth-od for the Selection of Polar Stationary Phases for Gas-Liquid Chromatography based on the Theory of Intermolecular Interaction, In: V.P. Kolotov, N.S. Bezaeva (eds) Advances in Ge-ochemistry, Analytical Chemistry, and Plane-tary Sciences: 75th Anniversary of the Vernad-sky Institute of the Russian Academy of Sci-ences. Springer, Cham. 2023, 495-508. https://doi.org/10.1007/978-3-031-09883-3_29

Dolgonosov A.M. Model' elektronnogo gaza i teoriya obobshchennykh zaryadov dlya opisaniya mezhatomnykh vzaimodeystviy i adsorbtsii. M., LIBROKOM. 2009. 176 p. (In Russ.)

Dolgonosov A.M. A theory of general-ized charges for describing interatomic interac-tions. Russian Journal of Physical Chemistry A, 2001; 75: 1659-1666.

Reinganum M. Kräfte elektrischer Dop-pelpunkte nach der statistischen Mechanik und Anwendung auf molekulare und Ionenwir-kungen. Annalen der Physik, 1912; 343: 649-668.

Keesom W.H. Die van der Waalsschen Kohäsionskräfte. Physikalische Zeitschrift 1921; 22: 129-141.

Debye P. Van der Waals cohesion forc-es. Physikalische Zeitschrift, 1920; 21: 178-187.

Falkenhagen H. Kohäsion und zustandsgleichung bei dipolgasen. Physikalische Zeitschrift, 1922; 23: 87-95.

Dolgonosov A.M. A model of hydrogen bond formation between the molecules in vapor and liquid. Journal of Structural Chemistry, 2020; 20(61): 1045-1058. https://doi.org/10.1134/S0022476620070069

Avgul' N.N., Kiselev A.V., Poshkus D.P. Adsorbciya gazov i parov na odnorodnyh poverhnostyah, M., Khimiya, 1975. 384 p. (In Russ.)

Kiselev A.V. Mezhmolekulyarnye vzaimodejstviya v adsorbcii i hromatografii. M., Vyssh. shk., 1986. 360 p. (In Russ.)

Buryak A.K. The use of molecular-statistical methods for the calculation of ther-modynamic characteristics of adsorption for identification of organic compounds by gas chromatography/mass spectrometry. Russian Chemical Reviews, 2002; 71(8): 695-706.

Yashkina E.A., Yashkin S.N., Svetlov D.A., Gorshkov V.V. Themodynamics of ad-sorption and patterns of the gas-chromatographic retention of cyclic amines on surfaces of graphitized thermal carbon black. Russian Journal of Physical Chemistry A, 2015; 89(9): 1672-1682.

Svetlov D.A., Sarkisova V.S., Yashkin S.N. Adsorption of isomeric aryl- and diada-mantane molecules on the surface of graphi-tized thermal carbon black. Izvestiya Akademii nauk, Seriya khimicheskaya, 2011; 9: 1784-1788. (In Russ.)

Abraham M.H., Ibrahim A., Zissimos A.M. Determination of sets of solute de-scriptors from chromatographic measurements. Journal of Chromatography A, 2004; 1037: 29-47.

Abraham M.H. Scales of solute hydro-gen-bonding: their construction and application to physicochemical and biochemical processes. Chemical Society Reviews, 1993; 22: 73-83.

Abraham M.H., Du C.M., Platts J.A. Lipophilicity of the nitrophenols. Journal of Organic Chemistry, 2000; 65: 7114-7118.

Zaitceva E.A. Obzor metodov klassi-fikacii nepodvizhnyh faz v gazovoj hromato-grafii. Sorbtsionnye I khromatograficheskiye protsessy, 2020; 20(2): 175-196. (In Russ.)

Minkin V.I., Simkin B.YA., Minyaev R.M. Teoriya stroeniya molekul. Rostov-na-Donu, Feniks, 1997. 560 p. (In Russ.)

Kaplan I.G. Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials. John Wiley & Sons, Ltd, West Sussex, England, 2014. 312 p.

Dolgonosov A.M. Svyaz' mezhdu veli-chinoj molekulyarnoj ploshchadki i konstantoj Genri pri adsorbcii organicheskih molekul na nespecificheskom adsorbente. Zhurnal Fizi-cheskoi Khimii, 1994; 68: 2187-2190. (In Russ.)

Dolgonosov A.M. Calculation of ad-sorption energy and Henry law constant for nonpolar molecules on a nonpolar uniform ad-sorbent. Journal of Physical Chemistry B, 1998; 102: 4715-4730.

Dolgonosov A.M. Energy and Molecu-lar Area of the Adsorbate on a Uniform Adsor-bent. Doklady Physical Chemistry, 1998; 358(3): 355-359.

Dolgonosov A.M. Effect of the structure of unbranched molecules of hydrocarbons on their adsorption by a uniform surface. Russian Journal of Physical Chemistry A, 1998; 72: 101-106.

Dolgonosov A.M. Effect of the structure of branched molecules on characteristics of their chromatographic retention. Russian Jour-nal of Physical Chemistry A, 1998; 72: 1281-1285.

Dolgonosov A.M. Calculation of the Henry constant for the adsorption of unsaturat-ed and cyclic hydrocarbons on a uniform plane surface. Russian Journal of Physical Chemistry A, 2001; 75: 327-335.

Dolgonosov A.M. A priori calculation of the adsorption properties of molecules from their topology. Doklady Chem., 2001; 377: 89-93.

Dolgonosov A.M. The screening effect in interatomic interactions. Russian Journal of Physical Chemistry A, 2002; 76: 2015-2019.

Dolgonosov A.M. Description of ad-sorption in the Henry region in terms of gener-alized charge. Russian Journal of Physical Chemistry A, 2002; 76: 993-998.

Dolgonosov A.M. Nespetsificheskaya selektivnost? v probleme modelirovaniya vysokoeffektivnoy khromatografii. M., KRASAND, 2012. 256 p. (In Russ.)

Dolgonosov A.M., Rudakov O.B., Surovcev I.S., Prudkovsky A.G. Kolonochnaya analiticheskaya khromatografiya kak ob"ekt matematicheskogo modelirovaniya, GEOHI RAN – Voronezhskij GASU, Voronezh, 2013. 467 p. (In Russ.)

Dolgonosov A.M. Effects of nonideal adsorption on the surface of a liquid stationary phase in gas chromatography. The sorption potential and capacity of the surface. Russian Journal of Physical Chemistry A, 2006; 80: 960-964.

Dolgonosov A.M., Prudkovsky A.G. Ef-fects of nonideal adsorption on the surface of a liquid stationary phase in gas chromatography. The degree of freedom restriction. Russian Journal of Physical Chemistry A, 2006; 80: 964-969.

Dolgonosov A.M., Prudkovsky A.G. Barriers to intramolecular rotation determined from the temperature dependence of the Henry constant in the region of adsorbed molecule rigidity failure. Russian Journal of Physical Chemistry A, 2008; 82: 812-820.

Dolgonosov A.M. A model for a general type of intermolecular interaction between a molecule and a liquid phase based on the theo-ry of generalized charges. Sorbtsionnye I khromatograficheskiye protsessy, 2020; 20(3): 343-361. (In Russ.)

Dolgonosov A.M. Relation between ad-sorbate molecular area and Henry constant for adsorption of hydrocarbons on thermal carbon black. Doklady Akademii Nauk, 1994; 338: 39-42. (In Russ.)

Dolgonosov A.M. Effect of electronic degeneracy on interatomic interaction parame-ters. Russian Journal of Inorganic Chemistry, 2015; 60: 194-197.

Dolgonosov A.M. The surface tension coefficients and critical temperatures of uni-form nonpolar liquids from a priori calculations within the framework of the theory of general-ized charges. Russian Chemical Bulletin, 2016; 65(4): 952-963.

Dolgonosov A.M., Hypothesis for coor-dination number of critical fluid molecules ex-pressed in model potential and critical tempera-ture for simple substances. Theoretical Chem-istry Accounts. 2020; 139(90): 1-8. https://doi.org/10.1007/s00214-020-02590-3

Gordon A., Ford R. Sputnik himika / Per. s angl. E. L. Rozenberga, S. I. Koppel'. M., Mir, 1976, 541 p. (In Russ.)

Spravochnik khimika. T. 1. Pod red. B.P. Nikol'skogo. M.: Himiya, 1966. 1069 p. (In Russ.)

Bogoslovskij Yu.N., Anvaer B.I., Vigdergauz M.S. Hromatograficheskie post-oyannye v gazovoj hromatografii. Uglevodoro-dy i kislorodsoderzhashchie soedineniya. Spravochnik, Gosstandart; GSSSD, Izd-vo standartov, M. 1978, 191 p. (In Russ.)

Dolgonosov A.M. Svyaz' energii ad-sorbcii s indeksom Kovacha, vytekayushchaya iz teorii obobshchennyh zaryadov. Sorbtsionnye I khromatograficheskiye protsessy, 2015; 15: 168-178. (In Russ.)

Dolgonosov A.M. A nonlinear relation between adsorption enthalpy and a chromato-graphic retention index. Protect. Metals & Phys. Chem. Surfaces, 2015; 51: 951-956.

Dolgonosov A.M., Prudkovsky A.G. Mekhanizm raspredeleniya v gazo-zhidkostnoj hromatografii, vklyuchayushchij effekt kon-formacionnoj perestrojki makromolekuly nepodvizhnoj fazy pri kontakte s molekuloj adsorbata. Sorbtsionnye I khromatografich-eskiye protsessy, 2010; 10(6): 887-893. (In Russ.)

Yu-Ran Luo. De vinculum parentum provocant dissociationem per organicum indus-tria comlibras [Handbook of bond dissociation energies in organic compounds]. Florida: Nabu Press, 2003. 1687 pp.

Lange's Handbook of Chemistry. Fif-teenth Edition. J.A. Dean, ed., McGraw-Hill. 1998. 1291 p.

Gurvich L.V., Karachevcev G.V., Kon-drat'ev V.N., Lebedev Yu.A., Medvedev V.A., Potapov V.K., Hodeev YU.S.. M., Energii razryva himicheskih svyazej. Potencialy ion-izacii i srodstvo k elektronu. Nauka, 1974. 351 pp. (In Russ.)

CRC Handbook of Chemistry and Phys-ics A Ready-Reference Book of Chemical and Physical Data, Izd. 97e, pod red. David R. Lide, Thomas J. Bruno. CRC Press Taylor & Francis Group. New York. 2016-2017. 2643 p.

Published
2024-05-28
How to Cite
Zaitceva, E. A., & Dolgonosov, A. M. (2024). Theoretical calculation of the parameters of the three-parameter chromatographic phase characterization method I. Dispersion forces parameter – generalized charge. Sorbtsionnye I Khromatograficheskie Protsessy, 24(2), 209-226. https://doi.org/10.17308/sorpchrom.2024.24/12126