Determination of 3-(4-hydroxyphenyl)lactic acid by an amperometric sensor with molecularly imprinted polymers

  • Anastasia O. Korovkina Voronezh State University, Voronezh
  • Wu Hoang Yen Voronezh State University, Voronezh, Food Industrial University Ho Chi Minh City, Vietnam
  • Natalia V. Beloborodova Federal Scientific and Clinical Centre of Resuscitation and Rehabilitation, Moscow
  • Anton Yu. Vybornyi Voronezh State University, Voronezh
  • Alexander N. Zyablov Voronezh State University, Voronezh
Keywords: molecularly imprinted polymer, 3-(4-hydroxyphenyl)lactic acid, HPLA, sepsis, polyimide, amperometric sensor

Abstract

Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the body’s response to infection. If sepsis is not diagnosed early and treated, it can lead to septic shock, multi-organ failure, and death. The diagnosis of sepsis, traditionally relying on clinical findings and detection of aetiologically significant microorganisms in the blood and foci, has been improved in recent years by the search for and implementation of various biomarkers. One promising biomarker of sepsis is 3-(4-hydroxyphenyl)lactic acid (HPLA). In this study, we developed an amperometric sensor modified with a molecularly imprint polymer (MIP) of hydroxyphenyl lactic acid and proved the fundamental possibility of determining HPLA by this sensor in model aqueous solutions. Molecularly imprinted polymers are widely used to separate substances and to produce selective sensors. Among the variety of selective materials, polyimides are of particular interest. Therefore, in this study, we developed MIP sensors imprinted with 4-hydroxyphenyl lactic acid on the basis of copolymer of 1,2,4,5-benzoltetracarboxylic acid with 4,4'-diaminodiphenyloxide. The sensors were prepared in two stages (1st stage at 80°С, 2nd stage at 180°С) by non-covalent imprinting method. High selectivity of PMO-sensors towards target molecules was confirmed. The range of the determined concentrations of the acid was 0.2-0.0002 mg/dm3. The experimentally determined detection limit of 4-hydroxyphenyl lactic acid was 4.5·10-5 mg/dm3.

Downloads

Download data is not yet available.

Author Biographies

Anastasia O. Korovkina, Voronezh State University, Voronezh

student, department of analytical chemistry, Voronezh State University, Voronezh, Russia, korovkina.ao@gmail.com

Wu Hoang Yen, Voronezh State University, Voronezh, Food Industrial University Ho Chi Minh City, Vietnam

postgraduate student, department of analytical chemistry, Voronezh State University, Voronezh; lecturer Department of Food Safety and Quality Management, Ho Chi Minh City University of Food Industry. e-mail: yenvh@hufi.edu.vn

Natalia V. Beloborodova, Federal Scientific and Clinical Centre of Resuscitation and Rehabilitation, Moscow

PhD, professor, honored worker of science of the RF, chief researcher, head of the lab in Federal Research and Clinical Center of Intensive Care and Reabilitology, Moscow, Russia, nvbeloborodova@yandex.ru

Anton Yu. Vybornyi, Voronezh State University, Voronezh

student, department of analytical chemistry, Voronezh State University, Voronezh, Russia, antonvyb.job@gmail.com

Alexander N. Zyablov, Voronezh State University, Voronezh

 Dr.Sci.  (Chemistry), professor, department of analytical chemistry, Voronezh State University, Voronezh, Russia, alex-n-z@yandex.ru

References

Bone R.C., Charles J., Fisher J.R., Clemmer, T.P., Slotman, G.J., Metz, C.A., Balk, R.A. Sepsis Syndrome: A Valid Clin-ical Entity. Critical Care Medicine. 1989; 17(5): 389-393.

Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M.H., Sibbald W.J., and Members of the ACCP/SCCM Consensus Confer-ence. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Inno-vative Therapies in Sepsis. Chest. 1992; 101: 1644-1655.

Kempker JA, Martin GS. The Changing Epidemiology and Definitions of Sepsis. Clin Chest Med. 2016; 37(2): 165-79. https://doi.org/10.1016/j.ccm.2016.01.002

Abraham E. New Definitions for Sepsis and Septic Shock: Continuing Evo-lution but with Much Still to Be Done. JAMA. 2016; 315(8): 757-759.

Calvert J.S., Price D.A., Chettipally U.K., Barton C.W., Feldman M.D., Hoff-man J.L., Jay M., Das R. A computational approach to early sepsis detection. Com-puters in biology and medicine. 2016; 74: 69-73.

Singer M. Deutschman C.S., Sey-mour C.W. The Third International Con-sensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 801-810.

Ahmedov R.F., Karabaev H.K., Ta-gaev K.R. Nash opyt lecheniya ozhogovogo sepsisa. Zhurnal Neotlozhnaya hirurgiya im. I.I. Dzhanelidze. 2021; 1:10-11. (In Russ.)

Whicher J., Bienvenu J., Monneret G. Procalcitonin as an acute phase marker. Ann Clin Biochem. 2001; 8(5): 483-93. https://doi.org/10.1177/000456320103800505

Romasheva M.L., Proshin D.G. Di-agnostika sepsisa u bol'nyh v kriticheskih sostoyaniyah. Obshchaya reanimatologiya. 2007; 4: 34-36. (In Russ.)

Kataeva A.V., Bahtina ZH.A. Sokrashchenie priznakovogo prostranstva v diagnostiki sepsisa. ITNOU: Infor-macionnye tekhnologii v nauke, obra-zovanii i upravlenii. 2018; 5(9): 30-33. (In Russ.)

Kozlov V.K. Sepsis, tyazhelyj sep-sis, septicheskij shok: patogeneticheskoe obosnovanie diagnoza, klinicheskaya inter-pretaciya, principy i metody diagnostiki. Kliniko-laboratornyj konsilium. 2014; 2(49): 20-40. (In Russ.)

Rudnov V.A., Kulabuhov V.V. SEPSIS-3: obnovlennye klyuchevye polozheniya, potencial'nye problemy i dal'nejshie prakticheskie shagi. Vestnik anesteziologii i reanimatologii. 2016; 13(4): 4-11. https://doi.org/10.21292/2078-5658-2016-13-4-4-11

Zhou Y., Yang Y., Pappas D. Micro-fluidic Chips for Sepsis Diagnosis. Methods in Molecular Biology. 2021; 2321: 207-219. https://doi.org/10.1007/978-1-0716-1488-4_18

Beloborodova N.V., Osipov A.A., Bedova A.YU. Biologicheskie svojstva nekotoryh nizkomolekulyarnygh aro-maticheskih mikrobnyh metabolitov, asso-ciirovannyh s sepsisom. Antibiotiki i himioterapiya. 2013; 7-8: 48-61. (In Russ.)

Moroz V.V., Beloborodova N.V., Osipov A.A., Vlasenko A.V., Bedova A.YU., Pautova A.K. Fenilkarbonovye kisloty v ocenke tyazhesti sostoyaniya i effektivnosti lecheniya bol'nyh v reanima-tologii. Obshchaya reanimatologiya. 2016; 4: 37-48. (In Russ.)

Moroz V.V., Beloborodova N.V., Bedova A.Yu., Revel’skii A.I., Getsina M.L., Osipov A.A., Sarshor Yu.N., Buchinskaya A.A., Olenin A.Yu. Devel-opment of methods of the gas chromato-graphic determination of phenylcarboxylic acids in blood serum and their adaptation to clinical laboratory conditions. Anal Chem. 2015; 70: 495-501. https://doi.org/10.1134/S1061934815040103

Pautova A.K., Meglei A.Y., Cher-nevskaya E.A., Alexandrova I.A., Belobo-rodova N.V. 4-Hydroxyphenyllactic Acid in Cerebrospinal Fluid as a Possible Marker of Post-Neurosurgical Meningitis: Retro-spective Study. J. Pers. Med. 2022; 12: 399. https://doi.org/10.3390/jpm12030399

Pautova A.K., Sobolev P.D. Patent RF, № 263571, 2017. (In Russ.)

Hughes A.T., Milan A.M., Shweihdi E., Gallagher J., Ranganath L. Method de-velopment and validation for analysis of phenylalanine, 4-hydroxyphenyllactic acid and 4-hydroxyphenylpyruvic acid in serum and urine. JIMD Reports. 2022; 63(4): 341-350. https://doi.org/10.1002/jmd2.12287

Sobolev P.D., Burnakova N.A., Beloborodova N.V., Revelsky A.I., Pautova A.K. Analysis of 4-Hydroxyphenyllactic Acid and Other Diagnostically Important Metabolites of α-Amino Acids in Human Blood Serum Using a Validated and Sensi-tive Ultra-High-Pressure Liquid Chroma-tography-Tandem Mass Spectrometry Method. Metabolites. 2023; 13: 1128. https://doi.org/10.3390/metabo13111128

Beloborodova N.V. Serum Aro-matic Microbial Metabolites as Biological Markers in Intensive Care. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Bi-omarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. 2023; 13: 245-268.

Mohamed A.H., Ahmed H., Mokh-tar M., Sherin H., Mahmoud E., Dual fluo-rescence-colorimetric sensor based on sil-ver nanoparticles for determination of to-bramycin in its pharmaceutical prepara-tions. Spectrochimica Acta Part A: Mo-lecular and Biomolecular Spectroscopy, 2023; 303: 123172.

Wenhao M., Wanyi X., Shaoxi F., Shixuan H., Bohua Y., Yongjia W., Changjun H., Danqun H., Deqiang W., Na-nopore electrochemical sensors for emerg-ing hazardous pollutants detection. Elec-trochimica Acta, 2024; 475: 143678.

Lin' K.N., Duvanova O.V., Nikitina S.Yu., Zyablov A.N. Primenenie p'ezosen-sorov dlya opredeleniya karbonovyh kislot v promezhutochnyh produktah proizvod-stva pishchevogo etanola. Zavodskaya la-boratoriya. Diagnostika materialov. 2019; 85(4): 11-16.

Duvanova O.V., Krivonosova I.A., Zyablov A.N., Falaleev A.V., Selemenev V.F., Sokolova S.A. Primenenie p'ezoel-ektricheskih sensorov dlya opredeleniya oleinovoj i pal'mitinovoj kislot v rastitel'n-yh maslah. Zavodskaya laboratoriya. Di-agnostika materialov. 2017; 83(2): 18-22. (In Russ.)

Aytaç G., Gamze K., Mahmut K., Savaş S., Rıdvan S., Preparation of MIP-based QCM nanosensor for detection of caffeic acid. Talanta, 2014; 119: 533-537.

Zhibrova Yu.A., Zyablov A.N., Shcheglova N.A., Krasnikova O.P., Sele-menev V.F. Polimery s molekulyarnymi otpechatkami dlya p'ezokvarcevyh senso-rov. Soobshchenie 1. Analiz lekarstvennyh preparatov, soderzhashchih glicin. Sorbtsionnye i khromatograficheskie protsessy. 2008; 8(4): 686-688. (In Russ.)

Zyablov A.N., Govoruhin S.I., Duvanova O.V., Selemenev V.F., Nguen A.T. Protochno-inzhekcionnoe opredelenie valina p'ezokvarcevym sensorom, modifi-cirovannym polimerom s molekulyarnymi otpechatkami. Analitika i kontrol'. 2014; 18(4): 438-441. (In Russ.)

Krivonosova I.A., Duvanova O.V., Zyablov A.N., Sokolova S.A., Dyakonova O.V. The determination of fatty acids in liquids using piezoelectric sensors based on molecular imprinting polymers. Butlerov communications. 2015; 42(6): 152-157.

Arian Y., Somayeh F., Nishat T., Mina H., Molecularly imprinted polymers (MIP) combined with Raman spectroscopy for selective detection of Δ⁹-tetrahydrocannabinol (THC). Talanta. 2024; 267: 125271.

Zyablov A. N., Duvanova O. V. i dr. Patent RF, № 137946, 2014. (In Russ.)

Zyablov A. N., Duvanova O. V. i dr. Patent RF, № 1138636, 2014. (In Russ.)

Merenkova A.A., Vu H.I., Grech-kina M.V., Zyablov A.N. Morfologiya poverhnosti polimerov s molekulyarnymi otpechatkami na osnove poliimida. Sorbtsionnye i khromatograficheskie protsessy. 2020; 20(6): 760-764. (In Russ.)

D'yakonova O.V., Zyablov A.N., Kotov V.V., Eliseeva T.V., Selemenev V.F., Frolova V.V. Issledovanie sostoyani-ya poverhnosti membran na osnove poli-amidokisloty. Sorbtsionnye i khromato-graficheskie protsessy. 2005; 5(4): 501-506. (In Russ.)

D'yakonova O.V., Sokolova S.A., Zyablov A.N., ZHibrova YU.A. Issledo-vanie sostoyaniya poverhnosti membran-nyh materialov metodom skaniruyushchej zondovoj mikroskopii. Sorbtsionnye i khromatograficheskie protsessy. 2008; 8(5): 863-868. (In Russ.)

Vu H.I., Kao N.L., Zyablov A.N. Analiz svojstv plenok molekulyarno-imprintirovannyh polimerov na osnove po-liimida. Sorbtsionnye i khromatografiches-kie protsessy. 2021; 21(3): 360-368. (In Russ.)

Yahan Cui, Jie Ding, Yu Su, Lan Ding. Facile construction of magnetic hy-drophilic molecularly imprinted polymers with enhanced selectivity based on dynam-ic non-covalent bonds for detecting tetra-cycline. Chemical Engineering Journal. 2023; 52(1): 139291.

Ruixia G., Yi H., Lili Z., Xihui C., Dechun L., Min Z., Yuhai T., Yuansuo Z. A facile method for protein imprinting on di-rectly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy. Chemical Engi-neering Journal. 2016; 284: 139-148.

Published
2024-05-28
How to Cite
Korovkina, A. O., Yen, W. H., Beloborodova, N. V., Vybornyi, A. Y., & Zyablov, A. N. (2024). Determination of 3-(4-hydroxyphenyl)lactic acid by an amperometric sensor with molecularly imprinted polymers. Sorbtsionnye I Khromatograficheskie Protsessy, 24(2), 227-235. https://doi.org/10.17308/sorpchrom.2024.24/12127

Most read articles by the same author(s)