Molecular-dynamic modelling of the adsorption of optical isomers of leucine on the chiral supramolecular surface of γ-glycine
Abstract
To establish the mechanism for the chiral recognition of a surface with supramolecular chirality, we conducted molecular- dynamic simulation of the adsorption of leucine enantiomers on a fragment of a γ-glycine crystal. Simulations were conducted using the GROMACS software package with the GROMOS96 54a7 force field. Simulation of D- and L-leucine sorption was performed in an NVT ensemble with a modified Berendsen thermostat (V-rescale). Before that, the systems were subjected to energy minimisation and NVT and NPT equilibration for 200 ps at 300 K. To uniformly distribute adsorbate molecules on the surface of a glycine crystal monolayer, we used an annealing protocol at 433 K with gradual cooling to 230 K. To prevent glycine molecules from changing their geometry during the simulation, they were “frozen” to 0 K, and the simulation time was 20 ns. To exclude interactions of adsorbate molecules with the reverse side of the crystal layer, we used periodic boundary conditions only in the x and y directions. Simulations of 20, 40, 60, and 80 molecules of leucine enantimers were performed on a fragment of a γ-glycine crystal with a size of 147 molecules and a graphene surface of 12x6 nm. The Coulomb and Lennard-Jones energies of intermolecular interactions of glycine-leucine, leucine-leucine, and graphene-leucine were calculated. When 20 leucine molecules were adsorbed on the surface of γ-glycine with upward-directed COO– groups, the degree of covering the glycine surface was θ≈0.44. At this degree of covering, there were no distinctive differences in the Coulomb and Lennard-Jones energies of glycine-leucine interactions between the enantiomers of leucine. However, with the adsorption of 40 leucine molecules (θ≈0.88), the Coulomb energy of interactions of leucine enantiomers with the glycine surface differed by 168.0 kJ/mol and the Lennard-Jones energy differed by 15.1 kJ/mol. Over the course of adsorption of 60 leucine molecules (θ≈1.32), a significant difference was observed in the Coulomb energy (∆ ECoulGly-Leu=664.1 kJ/mol) and the Lennard-Jones energy (∆ ELJGly-Leu=194.5 kJ/mol) of glycine-leucine interactions. Over the course of adsorption of 80 leucine molecules (θ≈1.76), there was a difference in glycine-leucine interactions (∆ ECoulGly-Leu=116.7 kJ/mol, ∆ ELJGly-Leu=105.4 kJ/mol). Over the course of adsorption of leucine (θ≈0.44) on the surface of γ-glycine with upward-directed NH3+ groups, a significant difference was observed in the energies of glycine-leucine interactions already with the adsorption of 20 molecules (θ≈0.44, ∆ ECoulGly-Leu=420.0 kJ/mol). Over the course of adsorption of 40 leucine molecules (θ≈0.88) ∆ ECoulGly-Leu=624.4 kJ/mol, ∆ ELJGly-Leu=71.5 kJ/mol. Over the course of adsorption of 60 leucine molecules (θ≈1.32) ∆ ECoulGly-Leu=304.4 kJ/mol, ∆ ELJGly-Leu=59.1 kJ/mol. Over the course of adsorption of 80 leucine molecules (θ≈1.76) there was a difference in glycine-leucine interactions ∆ ECoulGly-Leu=384.8 kJ/mol., ∆ ELJGly-Leu=122.2 kJ/mol.
Thus, based on the results of molecular-dynamic modelling, it was established that the selected form of the γ-glycine crystal demonstrated enantiselectivity similar to the previously studied cytosine. When modelling adsorption on different sides of γ-glycine, we observed chiral selectivity in relation to L-leucine. It was found that the sides with different functional groups showed enantioselectivity in different ranges of surface covering. This phenomenon will allow achieving greater enantioselectivity of the γ-glycine surface in the future by blocking the side with carboxyl groups.
Downloads
References
Davankov V.A., Biological Homochirality on the Earth, or in the Universe? A Selective Review, Symmetry, 2018; 10: 749-761. https://doi.org/doi:10.3390/sym10120749
Percec, V., Leowanawat, P., Why are biological systems homochiral, Isr. J. Chem., 2011; 51 (1107-1117): 1107. https://doi.org/10.1002/ijch.201100152
Coquerel G., Chiral Discrimination in the Solid State: Applications to Resolution and Deracemization. In Advances in Organic Crystal Chemistry: Comprehensive Reviews 2015, Tamura, R.; Miyata, M., Eds. Springer Japan: Tokyo, 2015; 393-420.
Liu M., Zhang L., Wang T., Supramolecular chirality in self-assembled systems, Chem. Rev., 2015; 115 (15): 7304-7397. https://doi.org/10.1021/cr500671p
Pasteur L., Recherches sur les relations qui peuvent exister entre la forme crystalline, la composition chimique et le sens de la polarisation rotatoire, Ann. Chim. Phys., 1848; 24: 442-459.
Viedma C., Coquerel G., Cintas P., Crystallization of Chiral Molecules. In Handbook of Crystal Growth, Elsevier: 2015; 952-1002.
Sogutoglu L.-C., Steendam R. R. E., Meekes H., Vlieg E., Rutjes F.P.J.T., Viedma ripening: a reliable crystallisation method to reach single chirality, Chem. Soc. Rev., 2015; 44: 6723-6732. https://doi.org/10.1039/c5cs00196j
Zhang H.-M., Xie Z.-X., Long L.-S., Zhong H.-P., Zhao W., Mao B.-W., Xu X., Zheng L.-S., One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces, Journal of Physical Chemistry C, 2008; 112: 4209-4218. https://doi.org/10.1021/jp076916a
Sakamoto M., Spontaneous chiral crystallization of achiral materials and absolute asymmetric photochemical transformation using the chiral crystalline environment, J. Photochem. Photobiol., C, 2006; 7: 183-196. https://doi.org/10.1016/j.jphotochemrev.2006.11.002
Sakamoto M., Mino T., Yoshida Y., Asymmetric synthesis using crystal chirality, Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017; 75 (5): 509-521. https://doi.org/10.5059/yukigoseikyokaishi.75.509
Matsumoto A., Kaimori Y., Kawasaki T., Soai K., Asymmetric autocatalysis initiated by crystal chirality of achiral compounds. In Advances in Asymmetric Autocatalysis and Related Topics, Pályi, G.; Zucchi, C., Eds. Elsevier: 2017; 337-355.
Soai K., Osanai S., Kadowaki K., Yonekubo S., Shibata T., Sato I., d- and l-quartz-promoted highly enantioselective synthesis of a chiral organic compound, J. Am. Chem. Soc., 1999; 121: 11235-11236. https://doi.org/10.1021/ja993128t
Belonogov E.V., Muslimov I.N., Zinoviev I.M., Guskov V.Yu., Kinetic features of the adsorption of menthol enantiomers on o-toluylic acid and CsCuCl3 crystals with supramolecular chirality, Sorbcionnye i hromatograficheskie processy, 2023; 23 (4): 657-666. https://doi.org/10.17308/sorpchrom.2023.23/11574
Gus’kov V.Yu., Allayarova D.A., Garipova G.Z., Pavlova I.N., Supramolecular chiral surface of nickel sulfate hexahydrate crystals and its ability to chirally recognize enantiomers by adsorption data, New J. Chem., 2020; 44: 17769-17779.
Gus’kov V.Y., Gallyamova G.A., Sairanova N.I., Sharafutdinova Y.F., Khalilov L.M., Mukhametzyanov T.A., Zinoviev I.M., Gainullina Y.Y., Possibility of chiral recognition by adsorption on enantiomorphous crystals: the impact of crystal surface polarity, Phys. Chem. Chem. Phys., 2022; 24: 26785-26794.
Penzien K., Schmidt G.M.J., Reactions in chiral crystals: an absolute asymmetric synthesis, Angew. Chem. Int. Ed., 1969; 8(8): 608-609. https://doi.org/10.1002/anie.196906082
Soai K., Shibata T., Morioka H., Choji K., Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule, Nature, 1995; 378: 767-768. https://doi.org/10.1038/378767a0
Soai K., Asymmetric autocatalysis. Chiral symmetry breaking and the origins of homochirality of organic molecules, Proc. Jpn. Acad., Ser. B, 2019; 95(3): 89-110. https://doi.org/10.2183/pjab.95.009
Gus’kov V.Y., Sidelnikov A.V., Sukhareva D.A., Gainullina Y.Y., Kudasheva F.K., Maistrenko V.N., Separation of the menthol enantiomers on the sorbent based on supramolecular network structure, Sorbtsionnye i khromatograficheskie protsessy, 2016; 16(6): 797-802.
Gus’kov V.Y., Sukhareva D.A., Gainullina Y.Y., Hamitov E.M., Galkin Y.G., Maistrenko V.N., Chiral recognition capabilities of melamine and cyanuric acid supramolecular structures, Supramol. Chem., 2018; 30(11): 940-948 https://doi.org/10.1080/10610278.2018.1489541
Muslimov I.N., Gus'kov V.Yu., Osobennosti supramolekuljarnogo hiral'nogo raspoznavanija pri adsorbcii na poverhnosti kristallov orto-toluilovoj kisloty, Sorbcionnye i hromatograficheskie processy, 2023; 23 (2): 189-198. https://doi.org/10.17308/sorpchrom.2023.23/11143
Gus’kov V.Y., Shayakhmetova R.K., Allayarova D.A., Gilfanova E.L., Pavlova I.N., Garipova G.Z., Mechanism of chiral recognition by enantiomorphous cytosine crystals during enantiomer adsorption, Phys. Chem. Chem. Phys., 2021; 23: 11968-11979.
Ishikawa K., Tanaka M., Suzuki T., Sekine A., Kawasaki T., Soai K., Shiro M., Lahave M., Asahi T., Absolute chirality of the c-polymorph of glycine: correlation of the absolute structure with the optical rotation, Chem. Commun., 2012; 48: 603-6033. https://doi.org/10.1039/c2cc30549f
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 2015; 1-2: 19-25.
Pronk S., Pall S., Schulz,R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J. C., Kasson P.M., van der Spoel D., Hess B., Lindahl E., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 2013; 29 (7): 845-54.
Hess B., Kutzner C., van der Spoel D., Lindahl E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, 2008; 4 (3): 435-447.
Schmid N., Eichenberger A.P., Choutko A., Riniker S., Winger M., Mark,A.E., van Gunsteren W.F., Definition and testing of the GROMOS force-field versions 54A7 and 54B7, Eur Biophys J., 2011; 40(7): 843-856.
Malde A.K., Zuo L., Breeze M., Stroet M., Poger D., Nair P.C., Oostenbrink C., Mark A.E., An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0, Journal of Chemical Theory and Computation, 2011; 7(12): 4026-4037.
Koziara K.B., Stroet M., Malde A.K., Mark A.E., Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies, Journal of Computer-Aided Molecular Design, 2014; 28(3): 221-223.
Iitaka Y., The crystal structure of [gamma]-glycine, Acta Crystallographica, 1961; 14(1): 1-10. https://doi.org/doi:10.1107/S0365110X61000012
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 2012; 4 (8): 17. https://doi.org/10.1186/1758-2946-4-17
GLYCIN01 : Glycine Space Group: P 32 (145), Cell: a 7.037Å b 7.037Å c 5.483Å, α 90° β 90° γ 119.99999999999999
Sanner M.F., Python: a programming language for software integration and development, J. Mol. Graph. Model, 1999; 17(1): 57-61.
Brunner H., Tsuno T., Balázs G., Chiral Selectivity in the Achiral Amino Acid Glycine, The Journal of Organic Chemistry, 2019; 84 (24): 16199-16203. https://doi.org/10.1021/acs.joc.9b02726
Zinovyev I., Ermolaeva E., Sharafutdinova Y., Gilfanova E., Khalilov L., Pavlova I., Guskov,V., Manifestation of Supramolecular Chirality during Adsorption on CsCuCl3 and γ-Glycine Crystals, Symmetry, 2023; 15 (2): 498.