Influence of resveratrol on the sorption of phosphorylated tau protein and MAPT on the PVDF membrane in a mouse model of Alzheimer’s disease

  • Ekaterina V. Chernyshova Voronezh State University
  • Ekaterina P. Krutskikh Voronezh State University
  • Polina I. Babenkova Voronezh State University
  • Veronika V. Nesterova Voronezh State University
  • Irina B. Pevzner A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University,
  • Egor Yu. Plotnikov A.N. Belozersky Research Institute of Physico-Chemical Biology
  • Artem P. Gureev Voronezh State University, Voronezh State University of Engineering Technologies
Keywords: Western blot, adsorption membrane, Tau protein, Alzheimer's disease, resveratrol

Abstract

Alzheimer’s disease is a complex neurodegenerative disease based on various processes associated with the accumulation and aggregation of defective proteins. Among them, the particularly important ones are the following: amyloid-β, which is formed by the breakdown of amyloid precursor protein, the accumulation of hyperphosphorylated tau proteins inside neurons that form neurofibrillary tangles, and aberrant aggregation and inclusion formation of microtubule-associated protein tau (MAPT). APP/PS1 transgenic mice act as a model of Alzheimer’s disease and express mutant human genes that cause the accumulation of amyloid-β peptides in the brain. The goal of this work was a quantitative assessment of the level of p-tau231 in the brain of transgenic mice with a model of AD using the sorption method. The objectives of the study also included testing the ability of the natural polyphenol resveratrol to reduce the concentration of p-tau231 in the brain of transgenic mice and improve their cognitive functions. Western blot is a widely used method for the immunodetection and in vitro quantitative determination of proteins.

Western blot allows separating proteins based on their molecular weight with the further transfer to an adsorption membrane. In this case, the proteins are transferred from the gel to the PVDF membrane using electrophoretic elution. This method involves placing a protein-containing polyacrylamide gel in direct contact with a PVDF membrane represented by a linear polymer with repetitive links -(CF2-CH2)-. Proteins transferred to the membrane are well-retained on its surface during the whole immunodetection process due to a combination of dipole and hydrophobic interactions. Western blot showed that mice with impaired protein aggregation accumulated significantly more MAPT and phosphorylated tau protein in the brain as compared to wild mice. In addition, in the course of the Morris water maze test, these mice showed cognitive deficits, which manifested both in the difficulty of finding the platform and more anxious behaviour, which confirmed pronounced thigmotaxis. The natural polyphenol resveratrol partially reversed cognitive deficits, although this effect was not associated with decreased levels of phosphorylated tau and MAPT.

Downloads

Download data is not yet available.

Author Biographies

Ekaterina V. Chernyshova, Voronezh State University

laboratory assistant at the Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia

Ekaterina P. Krutskikh, Voronezh State University

biological engineer, Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia

Polina I. Babenkova, Voronezh State University

student of the Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia

Veronika V. Nesterova, Voronezh State University

student of the Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia

Irina B. Pevzner, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University,

Ph.D. (Biol), Leading Researcher, Laboratory of Mitochondrial Structure and Function, A.N. Belozersky Research Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia

Egor Yu. Plotnikov, A.N. Belozersky Research Institute of Physico-Chemical Biology

Doctor of Science (Biol), Head of the Laboratory of Mitochondrial Structure and Function, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia

Artem P. Gureev, Voronezh State University, Voronezh State University of Engineering Technologies

Ph.D. (Biol), Associate Professor, Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh; Junior Researcher, Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia

References

Lim J., Li Q., He Z., Vingrys A., Wong V., Currier N., Mullen J., Bui B., Nguyen C. The Eye As a Biomarker for Alzheimer's Disease. Front Neurosci. 2016; 10: 536. https://doi.org/10.3389/fnins.2016.00536

Moda F., Ciullini A., Dellarole I., Lombardo A., Campanella N., Bufano G., Cazzaniga F., Giaccone G. Secondary Pro-tein Aggregates in Neurodegenerative Dis-eases: Almost the Rule Rather than the Ex-ception. Front Biosci (Landmark Ed). 2023; 28(10): 255. https://doi.org/10.31083/j.fbl2810255

Irvine G., El-Agnaf O., Shankar G. et al. Protein Aggregation in the Brain: The Molecular Basis for Alzheimer’s and Parkinson’s Diseases. Mol. Med. 2008; 14: 451–464. https://doi.org/10.2119/2007-00100.irvine

Previs M., VanBuren P., Begin K., Vigoreaux J., LeWinter M., Matthews D. Quantification of protein phosphorylation by liquid chromatography-mass spectrome-try. Anal. Chem. 2008; 80(15): 5864-72. https://doi.org/10.1021/ac800337v

Bass J., Wilkinson D., Rankin D., Phillips B., Szewczyk N., Smith K., Ather-ton P. An overview of technical considera-tions for Western blotting applications to physiological research. Scand J Med Sci Sports. 2017; 27(1): 4-25. https://doi.org/10.1111/sms.12702

The enzyme-linked immunosorbent assay (ELISA). Bull World Health Organ. 1976; 54(2): 129-39. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2366430/

Mishra M., Tiwari S., Gomes A. Protein purification and analysis: next gen-eration Western blotting techniques. Expert Rev Proteomics. 2017; 14(11): 1037-1053. https://doi.org/10.1080/14789450.2017.1388167

Goedert M., Wischik C., Crowther R., Walker J., Klug A. Cloning and se-quencing of the cDNA encoding a core pro-tein of the paired helical filament of Alz-heimer disease: identification as the micro-tubule-associated protein tau. Proc Natl Acad Sci U S A. 1988; 85(11): 4051-5. https://doi.org/10.1073/pnas.85.11.4051

Arendt T., Stieler J., Holzer M. Tau and tauopathies. Brain Res Bull. 2016; 126(3): 238-292. https://doi.org/10.1016/j.brainresbull.2016.08.018

Blennow K., Hampel H., Weiner M., Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010; 6(3): 131-44. https://doi.org/10.1038/nrneurol.2010.4

Jack C., Wiste H., Botha H., Weigand S., Therneau T., Knopman D., Graff-Radford J., Jones D., Ferman T., Boeve B., Kantarci K., Lowe V., Vemuri P., Mielke M., Fields J., Machulda M., Schwarz C., Senjem M., Gunter J., Petersen R. The bivariate distribution of amyloid-β and tau: relationship with established neu-rocognitive clinical syndromes. Brain. 2019; 142(10): 3230-3242. https://doi.org/10.1093/brain/awz268

Aschenbrenner A., Gordon B., Ben-zinger T., Morris J., Hassenstab J. Influ-ence of tau PET, amyloid PET, and hippo-campal volume on cognition in Alzheimer disease. Neurology. 2018; 91(9): e859-e866. https://doi.org/10.1212/wnl.0000000000006075

Pillai J., Cummings J. Clinical trials in predementia stages of Alzheimer dis-ease. Med Clin North Am. 2013; 97(3): 439-57. https://doi.org/10.1016/j.mcna.2013.01.002

Bukhari S. Dietary Polyphenols as Therapeutic Intervention for Alzheimer's Disease: A Mechanistic Insight. Antioxidants (Basel). 2022; 11(3): 554. https://doi.org/10.3390/antiox11030554

Islam F., Nafady M., Islam M. et al. Resveratrol and neuroprotection: an in-sight into prospective therapeutic ap-proaches against Alzheimer’s disease from bench to bedside. Mol Neurobiol. 2022; 59: 4384-4404. https://doi.org/10.1007/s12035-022-02859-7

Sadovnikova I., Gureev A., Ignat-yeva Dю, Gryaznova M., Chernyshova E., Krutskikh E., Novikova A., Popov V. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the Modulation of Gut Microbiome. Pharma-ceuticals. 2021; 14(7): 607. https://doi.org/10.3390/ph14070607

Patel K., Scott E., Brown V., Gescher A., Steward W., Brown K. Clinical trials of resveratrol. Annals of the New York Academy of Sciences. 2011; 1215: 161-169. https://doi.org/10.1111/j.1749-6632.2010.05853.x

Mohammadpourfazeli S., Arash S., Ansari A., Yang S., Mallick K., Bagher-zadeh R. Future prospects and recent de-velopments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv. 2023; 13(1): 370-387. https://doi.org/10.1039/d2ra06774a

Vorhees C., Williams M. Morris water maze: procedures for assessing spa-tial and related forms of learning and memory. Nat Protoc. 2006; 1(2): 848-58. https://doi.org/10.1038/nprot.2006.116

Wang Y., Wang K., Yan J., Zhou Q., Wang X. Recent Progress in Research on Mechanisms of Action of Natural Prod-ucts against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci. 2022; 23(22): 13886. https://doi.org/10.3390/ijms232213886

Ashton N., Benedet A., Pascoal T., Karikari T., Lantero-Rodriguez J., Brum W., Mathotaarachchi S., Therriault J., Sa-vard M., Chamoun M., Stoops E., Francois C., Vanmechelen E., Gauthier S., Zimmer E., Zetterberg H., Blennow K., Rosa-Neto P. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alz-heimer's disease. EBioMedicine. 2022; 76: 103836. https://doi.org/10.1016/j.ebiom.2022.103836

Cheng C., Lin K., Hong C., Wu D., Chang H., Liu C., Hsiao I., Yang C., Liu Y., Hu C. Plasmon-Activated Water Reduces Amyloid Burden and Improves Memory in Animals with Alzheimer's Disease. Sci Rep. 2019; 9(1): 13252. https://doi.org/10.1038/s41598-019-49731-8

Mayagoitia K., Tolan A., Shammi S., Shin S., Menchaca J., Figueroa J., Wil-son C., Bellinger D., Ahmed A., Soriano S. Loss of APP in mice increases thigmotaxis and is associated with elevated brain ex-pression of IL-13 and IP-10/CXCL10. Physiol Behav. 2021; 240: 113533. https://doi.org/10.1016/j.physbeh.2021.113533

Yan H., Wenxia Z., Yongxiang Z. Bright lighting conditions during testing increase thigmotaxis and impair water maze performance in BALB/c mice, Be-havioural Brain Research. 2012; 226(1): 26-31. https://doi.org/10.1016/j.bbr.2011.08.043

Higaki A., Mogi M., Iwanami J., Min L-J., Bai H-Y., Shan B-S., et al. Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network. PLoS ONE. 2018; 13(5): e0197003. https://doi.org/10.1371/journal.pone.0197003

Miyasaka T., Xie C., Yoshimura S., Shinzaki Y., Yoshina S., Kage-Nakadai E., Mitani S., Ihara Y. Curcumin improves tau-induced neuronal dysfunction of nema-todes. Neurobiol Aging. 2016; 39: 69-81. https://doi.org/10.1016/j.neurobiolaging.2015.11.004

Porquet D., Casadesús G., Bayod S., Vicente A., Canudas A., Vilaplana J., Pelegrí C., Sanfeliu C., Camins A., Pallàs M., del Valle J. Dietary resveratrol pre-vents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 2013; 35(5): 1851-65. https://doi.org/10.1007/s11357-012-9489-4

Varamini B., Sikalidis A., Bradford K. Resveratrol increases cerebral glycogen synthase kinase phosphorylation as well as protein levels of drebrin and transthyretin in mice: an exploratory study. Int J Food Sci Nutr. 2014; 65(1): 89-96. https://doi.org/10.3109/09637486.2013.832171

Yu K., Kwan P., Cheung S., Ho A., Baum L. Effects of Resveratrol and Morin on Insoluble Tau in Tau Transgenic Mice. Transl Neurosci. 2018; 9: 54-60. https://doi.org/10.1515/tnsci-2018-0010

Liu F., Grundke-Iqbal I., Iqbal K., Gong C. Contributions of protein phospha-tases PP1, PP2A, PP2B and PP5 to the reg-ulation of tau phosphorylation. Eur J Neu-rosci. 2005; 22(8): 1942-50. https://doi.org/10.1111/j.1460-9568.2005.04391.x

Brest P., Lapaquette P., Souidi M., Lebrigand K., Cesaro A., Vouret-Craviari V., Mari B., Barbry P., Mosnier J., Hé-buterne X., Harel-Bellan A., Mograbi B., Darfeuille-Michaud A., Hofman P. A syn-onymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet. 2011; 43(3): 242-5. https://doi.org/10.1038/ng.762

Schweiger S., Matthes F., Posey K., Kickstein E., Weber S., Hettich M., Pfurtscheller S., Ehninger D., Schneider R., Krauß S. Resveratrol induces dephosphory-lation of Tau by interfering with the MID1-PP2A complex. Sci Rep. 2017; 7(1): 13753. https://doi.org/10.1038/s41598-017-12974-4

Wood H. Alzheimer disease: Bi-omarkers of AD risk - the end of the road for plasma amyloid-β? Nat Rev Neurol. 2016; 12(11): 613. https://doi.org/10.1038/nrneurol.2016.160

Strang K., Golde T., Giasson B. MAPT mutations, tauopathy, and mecha-nisms of neurodegeneration. Lab Invest. 2019; 99(7): 912-928. https://doi.org/10.1038/s41374-019-0197-x

Caillet-Boudin M., Buée L., Ser-geant N., Lefebvre B. Regulation of human MAPT gene expression. Mol Neurodegen-er. 2015; 10: 28. https://doi.org/10.1186/s13024-015-0025-8

Forrest S., Lee S., Nassir N., Mar-tinez-Valbuena I., Sackmann V., Li J., Ahmed A., Tartaglia M., Ittner L., Lang A., Uddin M., Kovacs G. Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy. Acta Neuropathol. 2023; 146(3): 395-414. https://doi.org/10.1007/s00401-023-02604-x

Published
2024-07-20
How to Cite
Chernyshova, E. V., Krutskikh, E. P., Babenkova, P. I., Nesterova, V. V., Pevzner, I. B., Plotnikov, E. Y., & Gureev, A. P. (2024). Influence of resveratrol on the sorption of phosphorylated tau protein and MAPT on the PVDF membrane in a mouse model of Alzheimer’s disease. Sorbtsionnye I Khromatograficheskie Protsessy, 24(3), 415-425. https://doi.org/10.17308/sorpchrom.2024.24/12243