Sorption of nitrite ions from aqueous solutions by acrylate hydrogels
Abstract
Acrylate hydrogels, highly hydrated net structures, are promising materials used for the sorption of pollutants. They can effectively absorb water, and are characterised by high mechanical strength and chemical stability. Hydrogels based on copolymers of acrylamide and sodium/potassium acrylate (commercial samples Agrikola (China) and Schastlivyi Dachnik (Russian Federation)) and graft copolymers of chitosan, acrylic acid, and acrylamide were used for the sorption of nitrite ions from aqueous solutions. The concentration of nitrite ions was determined photometrically using the Griess test. The following conditions for the sorption of nitrite ions were determined: рН 4 (the recovery rate depends on the surface charge of the adsorbent and sorbate), and the phase contact time was 160 minutes, during which the maximum adsorption capacity was 19.2-114.9 mg/g depending on the nature of the sorbent. The dependence of the sorption rate of nitrite ions on the phase contact time was approximated by pseudo-first and pseudo-second order models. The pseudo-second-order model better describes the sorption kinetics (r2 = 0.981-0.993) and allowed us to assume that the process has a chemisorption mechanism (ion exchange). Sorption isotherms were approximated using the Langmuir, Freundlich, and Dubinin-Radushkevich models. According to IUPAC, they belong to the first type. Based on the analysis of Langmuir isotherms (r2 = 0.978-0.995) we came to the conclusion that nitrite ions are distributed in the system aqueous solution/hydrogel due to the sorption on independent active centres of copolymers. The limiting adsorption of nitrite ions can depend on the structure of the polymer framework of sorbents, which in turn is determined by the synthesis method and the nature of polar groups.
Downloads
References
Yang H., Cheng H. Controlling nitrite level in drinking water by chlorination and chloramination. Sep. Purif. Technol. 2007; 56: 392-396. https://doi.org/10.1016/j.seppur.2007.05.036
Picetti R., Deeney M., Pastorino S., Miller M.R., Shah A., Leon D.A., Dangour A.D., Green R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res. 2022; 210: 112988. https://doi.org/10.1016/j.envres.2022.112988
Basaran B., Abanoz Y.Y., Şenol N.D., Oral Z.F.Y., Öztürk K., Kaban G. The levels of heavy metal, acrylamide, nitrate, nitrite, N-nitrosamine compounds in brewed black tea and health risk assessment: Türkiye. J. Food Compost. Anal. 2023; 120: 105285. https://doi.org/10.1016/j.jfca.2023.105285
Yuan J., Yin H., Jin X., Zhao D., Liu Y., Du A., Liu X., O’Mullane A.P. A practical FeP nano arrayselectrocatalyst for efficient catalytic reduction of nitrite ions in wastewater to ammonia. Appl. Catal. B. 2023; 325: 122353. https://doi.org/10.1016/j.apcatb.2022.122353
BadeeNezhad A., Emamjomeh M.M., Farzadkia M., JonidiJafari A., Sayadi M., Davoudian Talab A.H. Nitrite and nitrate concentrations in the drinking groundwater of Shiraz City, South-central Iran by statistical models. Iran. J. Public. Health. 2017; 46(9): 1275-1284.
Diriba D., Hussen A., Rao V.M. Removal of Nitrite from aqueous solution using sugarcane Bagasse and Wheat Straw. Bull. Environ. Contam. Toxicol. 2014; 93(1): 126-131. https://doi.org/10.1007/s00128-014-1297-3
Homagai P.L., Poudel R., Paudyal H., Ghimire K.N., Bhattarai A. Adsorption of nitrate and nitrite anion by modified maize stalks from aqueous solutions. Environ. Sci. Pollut. Res.2023; 30(19): 54682-54693. https://doi.org/10.1007/s11356-023-26179-y
Ogata F., Imai D., Kawasaki N. Adsorption of nitrate and nitrite ions onto carbonaceous material produced from soybean in a binary solution system. J. Environ. Chem. Eng. 2015; 3(1): 155-161. https://doi.org/10.1016/j.jece.2014.11.025
Fateme A., Soleimani M., Dargahi M.Investigation of kinetic and isotherm models for the removal of nitrate and nitrite ions on MNPs@PIL adsorbent from aqueous solution. Russ. J. Phys. Chem. 2020; 94(13): 2829-2835. https://doi.org/10.1134/s0036024420130026
Poursaberi T., Ghadernia S., Hassanisadi M., Torkestani K., Mirrahimi M. Efficient separation of nitrite from aqueous solutions by grafting metalloporphyrin on Fe3O4 nanoparticles. J. Iran. Chem. Soc. 2012; 10(1): 13-20. https://doi.org/10.1007/s13738-012-0123-2
Wan D., Liu H., Liu R., Qu J., Li S., Zhang J. Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio. Chem. Eng. J. 2012; 195-196: 241-247. https://doi.org/10.1016/j.cej.2012.04.088
Vigata M., Meinert C., Hutmacher D.W., Bock N. Hydrogels as drug delivery systems: a review of current characterization and evaluation techniques. Pharmaceutics. 2020; 12(12): 1188. https://doi.org/10.3390/pharmaceutics12121188
Rakhmetullayeva R.K., Abutalip M., UrkimbayevaZh.R., Kanzhigitova, D. K., Mangazbayeva R.A., Naushabayev A.K., Sarova N.B., Mukatayeva Zh.S., Zhigerbayeva G.N. Complex of hydrogels based on acrylic acid and methyl acrylate with copper ions. Mater. Today. Proc.2022; 71: 38-45. https://doi.org/10.1016/j.matpr.2022.07.246
Shi X., Cantu-Crouch D., Sharma V., Pruitt J., Yao G., Fukazawa K., Wu J.Y., Ishihara K. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids Surf. B. 2021; 199: 111539. https://doi.org/10.1016/j.colsurfb.2020.111539
Buenger D., Topuz F., Groll J. Hydrogels in sensing applications. Prog. Polym. Sci.2012; 37(12): 1678-1719. https://doi.org/10.1016/j.progpolymsci.2012.09.001.
Cao X., Jiang C., Sun N., Tan D., Li Q., Bi S., Song J. Recent progress in multifunctional hydrogel-based supercapacitors. J. Sci. Adv. Mater. Dev. 2021; 6(3):338-350. https://doi.org/10.1016/j.jsamd.2021.06.002
Khan A.H., Cook J.K., Wortmann W.J., Kersker N.D., Rao A., Pojman J. A., Melvin A.T. Synthesis and characterization of thiol-acrylate hydrogels using a base‐catalyzed Michael addition for 3D cell culture applications. J. Biomed. Mater. Res. Part B Appl. Biomater.2020; 108(5): 2294-2307. https://doi.org/10.1002/jbm.b.34565
Sennakesavan G., Mostakhdemin M., Dkhar L.K., Seyfoddin A., Fatihhi S.J. Acrylic acid/acrylamide based hydrogels and its properties - A review. Polym. Degrad. Stab.2020; 180: 109308. https://doi.org/10.1016/j.polymdegradstab.2020.109308
Maslova N.V., Kochetova Zh.Yu., Sukhanov P.T., Zmeev A.V. Investigation of the kinetics of hydrogel swelling based on acrylamide copolymers and potassium (sodium) acrylate. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022; 65(3): 27-34(in Russian). https://doi.org/10.6060/ivkkt.20226503.6498
Karmanova O.V., Tikhomirov S.G., Popov V.N., Lavlinskaya M.S., Sorokin A.V., Sukhanov P.T. A method for producing a composite superabsorbent polymer based on chitosan with improved moisture absorption capacity (in Russian). https://patentimages.storage.googleapis.com/0f/ed/aa/d31021f38cd58d/RU2763736C1.pdf (accessed 12.1.2023)
AL Samman M.T., Sánchez J. Chitosan- and alginate-based hydrogels for the adsorption of anionic and cationic dyes from water. Polymers. 2022; 14(8):1498. https://doi.org/10.3390/polym14081498
Kenawy E.-R., Elnaby H.H., Azaam M.M. Synthesis of superabsorbent composite based on chitosan-g-poly(acrylamide)/attapulgite. Polym. Bul. 2023. https://doi.org/10.1007/s00289-023-04877-4
Safari J.B., Bapolisi A.M., Krause R.W.M.Development of pH-sensitive chitosan-g-poly(acrylamide-co-acrylic acid) hydrogel for controlled drug delivery oftenofovirdisoproxil fumarate. Polymers. 2021; 13(20): 3571. https://doi.org/10.3390/polym13203571
Li I.-C., Chen Y.-H., Chen Y.-C. Sodium alginate-g-poly(sodium acrylate) hydrogel for the adsorption-desorption of ammonium nitrogen from aqueous solution. J. Water Process. Eng. 2022; 49: 102999. https://doi.org/10.1016/j.jwpe.2022.102999
Kazimirova K.O., Shtykov S.N. Sorption and concentration anionic azo dyes on nanomagnetite modified with cationic polyelectrolytes. Sorbtsionnye khromatograficheskie protsessy. 2023; 23(6): 980-992 (in Russ.). https://doi.org/10.17308/sorpchrom.2023.23/11859
Ho Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006; 136(3): 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043
Sun Z.M., Qu X.S., Wang G.F., Zheng S.L., Frost R.L. Removal characteristics of ammonium nitrogen from wastewater by modified Ca-bentonites. Appl. Clay Sci. 2015; 107: 46-51. https://doi.org/10.1016/j.clay.2015.02.003
Sukhanov P.T., Kushnir A.A. Adsorption of nitrophenols from aqueous media by N-vinylpyrrolidone-based polymeric adsorbents. Moscow Univ. Chem. Bull. 2019; 74: 88-92. https://doi.org/10.3103/S0027131419020081
Eyubova E.J., Nagiev K.J., Chiragov F.M. Equilibrium and kinetic studies of sorption of Fe(III) ions on R-modified sorbent with CSMA. Sorbtsionnye i Khromatograficheskie Protsessy. 2023; 23(6): 1094-1102 (in Russ.). https://doi.org/10.17308/sorpchrom.2023.23/11870
Kushnir A.A., Gubin A.S., Sukhanov P.T., Sizo K.O. Sorption of nootropics from aqueous media with activated carbon Norit®PK 1-3. Sorbtsionnye i khromatograficheskie protsessy. 2023; 23(1): 129-137 (in Russ.). https://doi.org/10.17308/sorpchrom.2023.23/11000
Sorokin A., Lavlinskaya M. Synthesis of the superabsobents enriched in chitosan derivatives with excellent water absorption properties. Polym. Bull. 2022; 79: 407-427. https://doi.org/10.1007/s00289-020-03521-9
Al-Ghouti M.A., Al-Absi R.S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 2020; 10: 5928. https://doi.org/10.1038/s41598-020-72996-3