Study of sorption of food acids by sulphoethylated chitosan followed by capillary electrophoresis determination

  • Alexander S. Chvilyov Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Elena L. Lebedeva Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Lyudmila K. Neudachina Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Yuliya S. Petrova Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
  • Anastasia I. Gorodilova Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
Keywords: capillary electrophoresis, tartaric acid, citric acid, oxalic acid, sorption

Abstract

The study of sorption concentration of food acids by new materials is important in terms of developing technologies for their extraction from various raw materials as well as new hybrid methods for their determination. The goal of the work was to study the sorption of food acids (citric, tartaric, and oxalic) by a sorbent based on N-2-sulphoethyl chitosan cross-linked with glutaraldehyde with a sulphoethylation degree of 0.5 (SEC 0.5).

The sorption of organic acids by SEC 0.5 was studied by the limited volume method in the pH range of 6.0–10.0 (ammonia buffer solution) at different phase contact times (1, 3, 5, and 24 h). The initial acid concentration was 1∙10-4 mol/dm3, the sorbent mass was 0.02 (or 0.05) g, and the solution volume was 10.0 cm3. The concentrations of acids in solutions before and after sorption were determined using capillary zone electrophoresis (CZE) with the Kapel-105M capillary electrophoresis system (Lumex group of companies, Russia) in the following conditions: chromate background electrolyte with the addition of CTA-OH and indirect photometric detection at a wavelength of 375 nm. It was established that in these conditions three food acids were determined selectively in the form of their fully deprotonated anions. The limits of acid determination were 3-6 mmol/dm3.

It was found that the dependences of the degree of extraction of tartaric, oxalic, and citric acids by SEC 0.5 from an ammonia buffer solution were similar: sorption reached its maximum at pH 6-7 and decreased at pH>7. Oxalic acid was extracted by the sorbent to the greatest extent in the experimental conditions. However, the degree of its extraction was not quantitative and amounted to 53%.

The use of a sorbent in copper or nickel form allowed significantly increasing the degree of extraction of food acids. The highest degrees of extraction of tartaric acid were achieved when using SEC 0.5 in nickel form (about 80% at pH 9) and SEC 0.5 in copper form for citric acid (100% at pH 6-7). The maximum values of the degree of extraction of oxalic acid by SEC 0.5 in copper and nickel form were similar (about 80% at pH 7).

The results of the conducted studies showed the potential of using the SEC 0.5 sorbent in the development of highly sensitive methods for the electrophoretic determination of tartaric, oxalic, and citric acids in various objects (food products, beverages, medicines).

Downloads

Download data is not yet available.

Author Biographies

Alexander S. Chvilyov, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

student, department of analytical and environmental chemistry of the Institute of natural sciences and mathematics, Ural Federal University, Yekaterinburg, Russian Federation

Elena L. Lebedeva, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Ph. D. (chemistry), associate prof., department of analytical and environmental chemistry of the Institute of natural sciences and mathematics, Ural Federal University, Yekaterinburg, Russian Federation

Lyudmila K. Neudachina, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Ph. D. (chemistry), associate prof., department of analytical and environmental chemistry of the Institute of natural sciences and mathematics, Ural Federal University, Yekaterinburg, Russian Federation

Yuliya S. Petrova, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

Ph. D. (chemistry), Head of the department of analytical and environmental chemistry of the Institute of natural sciences and mathematics, Ural Federal University, Yekaterinburg, Russian Federation

Anastasia I. Gorodilova, Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg

student, department of analytical and environmental chemistry of the Institute of natural sciences and mathematics, Ural Federal University, Yekaterinburg, Russian Federation, a.i.gorodilova@urfu.ru

References

Mazilnikov G.V., Shimansky A.P., Likhoded Yu.A., Miller S.S. Patent WIPO, no WO 2011/119126 A1, 2011.

Janusz W., Skwarek E., Adsorption of the Tartrate Ions in the Hydroxyap-atite/Aqueous Solution of NaCl System, Mate-rials, 2021; 14 (11): 3039-3055. https://doi.org/10.3390/ma14113039

Janusz W., Skwarek E., Comparison of Oxalate, Citrate and Tartrate Ions Adsorption in the Hydroxyapatite/Aqueous Electrolyte So-lution System, Colloids Inter., 2020; 4 (4): 45-57. https://doi.org/10.3390/colloids4040045

Pechenyuk S.I., Semushina Yu.P., Kadyrova G.I., Geleobraznye oksigidroksidy i tsitrat-iony: konkurentsiya mezhdu adsorbtsiei i kompleksoobrazovaniem, Sorbtsionnye i khro-matograficheskie protsessy, 2012; 12(5): 719-724. (In Russ.)

Selemenev V.F., Lantsuzskaya E.V., Krisilov A.V., Oros G.Yu., Naumenko L.F., Kharchenko G.Yu., Sorbtsiya pishchevykh kislot polifunktsional'nymi anionoobmenni-kami. Vestnik VGU, seriya: Khimiya. Biologi-ya. Farmatsiya, 2015; 3: 31-36. (In Russ.)

Chermit R.Kh., Chermit E.V., Degtyare-va M.S., Zabolotskii V.I., Obmennaya sorbtsi-ya i elektricheskaya provodimost' geterogen-nykh anionoobmennykh membran v sme-shannykh rastvorakh solei vinnoi kisloty, Sorbtsionnye i khromatograficheskie protsessy, 2013; 13(5): 668-675. (In Russ.)

Komarova N.V., Kamentsev Ya.S. Prak-ticheskoe rukovodstvo po ispol'zovaniyu sistem kapillyarnogo elektroforeza «Kapel'». Sankt-Peterburg, OOO «Veda». 202 p. (In Russ.)

Problemy analiticheskoi khimii. Vol. 18. Kapillyarnyi elektroforez. Ed. Kartsova L.A. Moscow, Nauka Publ., 2014, 444 p. (In Russ.)

Pavlova O.V., Kucher A.S., Sorbtsionnyi potentsial khitozana k pishchevym krasitelyam, Vestnik Grodnenskogo gosudarstvennogo uni-versiteta imeni Yanki Kupaly. Seriya 6. Tekhnika. 2021; 11(1): 86-96. (In Russ.)

Chermit Z.M., Ageeva N.M., Prime-nenie aktivirovannykh form khitozana dlya obrabotki vinogradnykh vin, Izvestiya vuzov. Pishchevaya tekhnologiya. 2016; 4: 51-53. (In Russ.)

Gruppi A., Romanini E., Bassani A., Lambri M., Chinnici F., Gabrielli M., Adsorp-tion Capabilities of Fungoid Chitosan Toward Organic Acids in Model Solutions and White Wine, Food Bioprocess Tech., 2023. https://doi.org/10.1007/s11947-023-03135-9

Petrova Yu.S., Neudachina L.K., Mek-haev A.V., Pestov A.V., Simple synthesis and chelation capacity of N-(2-sulfoethyl)chitosan, a taurine derivative, Carbohyd. Polym., 2014; 112: 462-468. https://doi.org/10.1016/j.carbpol.2014.06.028

Nurmukhametova K.R., Lebedeva E.L., Petrova Yu.S., Neudachina L.K., Issledovanie sorbtsii arginina sul'foetilirovannym khitoza-nom s posleduyushchim opredeleniem metodom kapillyarnogo elektroforeza, Sorbtsionnye i khromatograficheskie protsessy, 2022; 22(6): 856-868. https://doi.org/10.17308/sorpchrom.2022.22/10892 (In Russ.)

Petrova Yu.S., Pestov A.V., Usoltseva M.K., Neudachina L.K., Selective adsorption of silver(I) ions over copper(II) ions on a sul-foethyl derivative of chitosan, J. Hazard. Ma-ter., 2015; 299: 696-701. https://doi.org/10.1016/j.jhazmat.2015.08.001

GOST 31867–2012 Voda pit'evaya. Opredelenie soderzhaniya anionov metodom khromatografii i kapillyarnogo elektroforeza. Moscow, Standartinform Publ., 2014, 15 p. (In Russ.)

Lur'e Yu.Yu. Spravochnik po analitich-eskoi khimii. Moscow, Al'yans Publ., 2007, 447 p. (In Russ.)

Ovsyannikova D.V., Bondareva L.P., Grigorova E.V., Vzaimodeistvie metionina s mono- i bifunktsional'nymi karboksil'nymi ionoobmennikami v mednoi forme, Sorbtsionnye i khromatograficheskie protsessy, 2015; 15(4): 532-539. (In Russ.)

Babko A.K., Pyatnitskii I.V. Kolich-estvennyi analiz. Moscow, Vysshaya shkola Publ., 1962, 508 p. (In Russ.)

Kulikova D.I., Kulikova D.M., Shapnik M.S., Izuchenie kompleksoobrazovaniya sur'my (III) s vinnoi kislotoi, Vestnik Ka-zanskogo tekhnologicheskogo universiteta. 2007; 3-4: 7-12. (In Russ.)

Hyperquad Simulation and Speciation. Available at: http://www.hyperquad.co.uk/hyss.htm (ac-cessed 25 June 2023)

Khalil M.M., Mahmoud R.K., pH-metric studies of acid–base equilibria on the mixed M(II) complexes with R-3-[-1-hydroxy-2(methylamino)ethyl]phenol and some selected carboxylic acids, J. Iran. Chem. Soc. 2015; 12(1): 1149-1161. https://doi.org/10.1007/s13738-014-0576-6

Published
2024-10-22
How to Cite
Chvilyov, A. S., Lebedeva, E. L., Neudachina, L. K., Petrova, Y. S., & Gorodilova, A. I. (2024). Study of sorption of food acids by sulphoethylated chitosan followed by capillary electrophoresis determination. Sorbtsionnye I Khromatograficheskie Protsessy, 24(4), 592-600. https://doi.org/10.17308/sorpchrom.2024.24/12414