Influence of polymer structure on the swelling and selectivity of ion exchangers
Abstract
In the present work, the ion exchange model was further developed, based on expanded ideas about the interactions of ions, including Coulomb, dipole, and hydrogen bonds. Due to the closeness of the ionic radii, the model derives the canonical form of the equation for the binding energy. The equation contains a small parameter that includes differences in the size and hydrophilicity of the ions. Such parameters are the main factors influencing the value of the ion exchange constant. Based on the model describing the interaction of the counterion with the ion exchanger, expressions are derived to relate the selectivity parameters of ion exchange with the phenomenon of swelling of polymer ion exchangers. It is shown that the contribution of the hydration factor to the ion exchange energy is determined by the hydration number of the counterion and the swelling coefficient of the ion exchanger. The influence of the structural characteristics of cross-linked polymers on the volume of the swollen ion exchanger is considered and a pattern is derived linking the swelling coefficient and the proportion of the cross-linking agent. The theoretical conclusion is confirmed by experimental data for the polystyrene ion exchangers. Equations for selectivity coefficients for the strong ion exchangers are derived.
Downloads
References
Gregor H.P., Bregman J.I. Studies on ion-exchange resins. IV. Selectivity co-efficients of various cation exchangers to-wards univalent cations. J. Colloid Sci., 1951; 6: 323-347.
Marinsky J.A. Interpretation of Ion-Exchange Phenomena. In: Ion Exchange: A Series of Advances / Ed. by Marinsky J.A. NY: Buffalo, 1966; 1: 423 p. Ch.1.
Freeman D.H., Seatchard G. Volu-metric Studies of Ion-Exchange Resin Par-ticles Using Microscopy. J. Phys. Chem., 1965; 69(1): 70-74.
Babayan I. I., Tokmachev M. G., Ivanov A. V., Ferapontov N. B. Using Crosslinked Polyvinyl Alcohol Granules for the Determination of the Composition of Mixed Electrolyte Solutions. J. Anal. Chem., 2019; 74(8): 834-838.
Schroeder P.V. Über Erstarrungs-und Quellungserscheinungen von Gelatine. Z. Phys. Chem., 1903; 45U(1): 75-117.
Davankov V.A., Pastukhov A.V. Paradoxes of thermodynamics of swelling equilibria of polymers in liquids and va-pors. J. Phys. Chem. B, 2011; 115: 15188-15195.
Roldughin V.I., Karpenko-Jereb L.V., On the Schroeder paradox for nonionogenic polymers. Colloid Journal, 2017; 79(4): 532-539.
Kudukhova I.G., Rudakov O.B., Rudakova L.V., Ferapontov N.B. Kinetika nabukhaniya granul monogennykh i neionogennykh polimernykh materialov v vodno-spirtovykh rastvorakh. Sorbtsionnye i khromatogr. protsessy, 2010; 10(4): 589-594. (In Russ.)
Freger V. Hydration of Ionomers and Schroeder’s Paradox in Nafion, J. Phys. Chem. B, 2009; 113: 24-36.
Eisenman G. Cation selective glass electrodes and their mode of operation. Bi-ophys. J., Suppl., 1962; 2(2): 259-323.
Reihenberg D., Selectivity of Ion Exchange, In: Ion Exchange: A Series of Advances / Ed. by Marinsky J.A. NY: Buf-falo, 1966; 1: 423 p. Ch.2.
Dolgonosov A.M. Problems of the theory of ion exchange I: Describing forces of ion exchange in classical systems. Russ. J. Phys. Chem., 2022; 96(10): 2252-2258.
Dolgonosov A.M. Problems of the theory of ion exchange II: Selectivity of ion exchangers. Russ. J. Phys. Chem., 2022; 96(11): 2515-2522.
Robinson R.A., Stokes R.H. Elec-trolyte Solutions, Butterworths Sci. Publ., London, 1959; 559 p.
Warshel A., Levitt M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology, 1976; 103: 227-249.
Mehler E. L., Eichele G. Electro-static effects in water accessible regions of proteins. Biochemistry, 1984; 23: 3887-3891.
Hingerty B. E., Ritchie R. H., Fer-rell T. L. Dielectric effects in biopolymers: The theory of ionic saturation revisited. Biopolymers, 1985; 24: 427-439.
Mallik B., Masunov A., Lazaridis Th. Distance and exposure dependent ef-fective dielectric function. J. Comp. Chem., 2002; 23: 1090-1099.
Dolgonosov A.M. Expression for ef-fective dielectric permittivity of polar liq-uid at molecular scale. Theor. Chem. Ac-counts, 2022; 141: Art. 47.
Marcus Y. A simple empirical mod-el describing the thermodynamics of hydra-tion of ions of widely varying charges, siz-es, and shapes. Biophys. Chem., 1994; 5l: 111-127.
Y. Marcus. Effect of ions on the structure of water: structure making and breaking. Chem. Rev., 2009; 109: 1346-1370.
H. Chen, E. Ruckenstein. Hydra-tiond ions: from individual ions to ion pairs to ion clusters. J Phys Chem B, 2015; 119: 12671-12676.
Ch. Liu, F. Min, L. Liu, J. Chen, Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A mo-lecular dynamics study, Chem. Phys. Let., 2019; 727: 31-37.
Soldatov V.S., Kosandrovich E.G., Bezyazychnaya T.V. State of the lithium ions in the sulfostyrene cation exchanger according to ab initio quantum chemical calculations. React. Funct. Polym., 2018; 131: 219-229.
Helfferich F. Ion Exchange. NY: McGraw-Hill, 1962; 624 p.
Dolgonosov A. M., Khamizov R. Kh., Kolotilina N. K. Nano ion exchangers as modifiers of chromatographic phases and sources of analytical signal. J. Anal. Chem., 2019; 74(4): 382-392.
Freeman D.H. Study of Ion-Exchange System Using Microscopy. In: Ion Exchange: A Series of Advances / Ed. by Marinsky J.A. NY: Buffalo, 1966; 1: 423 p. Ch.6.




