Sorption of copper ions from aqueous solutions by highly dispersed cobalt ferrite and zinc ferrite
Abstract
Magnetic materials are highly demanded in sorption technologies of separation and purification of substances due to possibility of their fast and effective magnetic separation by external magnetic field for further use and regeneration. Nanoparticles of metal ferrites (MeFe2O4) are considered perspective to fabricate new magnetic sorbents as their magnetic susceptibility and physical-chemical properties can be tuned using different synthesis methods. Present work establishes kinetic and equilibrium characteristics of sorption extraction of copper ions from aqueous solutions by samples of nanodispersed powders of cobalt ferrite (Co-F) and zinc ferrite (Zn-F) synthesized by a citrate burning method. Specific surface area and porosity of samples was characterized by nitrogen adsorption-desorption isotherms. Sorption capacity of materials was determined in aqueous solutions of 0.005-0.075 N CuSO4 by varying time of sorption (0÷120 min), рН=2÷5, mass of sorbent at temperature of t=20оС. Quantitative analysis of solutions was done by photocolorimetric method. Magnetic properties of sorbents were qualitatively assessed by action of Nd-magnet on aqueous dispersions of ferrites. Experimental isotherms of nitrogen adsorption-desorption by samples of ferrites observed sigmoid shape corresponding to II type of IUPAC classification and a narrow loop of hysteresis caused by the presence of secondary mesopores in the materials. The specific surface area and pore volume of the samples were 26 m2/g (Zn-F), 16 m2/g (Co-F) and 0,106 cm3/g (Zn-F), 0,094 cm3/g (Co-F) respectively, while the pore diameter was 5.9 nm (Zn-F) and 21.4 nm (Co-F). The kinetic curves of Cu2+ ions sorption revealed that adsorption equilibrium in the system sorbent-solution established during 10 (Co-F) – 40 (Zn-F) min and lead to twice higher values of zinc ferrite sorption capacity as one for cobalt ferrite. The pseudo-second order kinetics model adequately (R2=0.93÷0.99) described the sorption process on ferrites. The calculated values of the rate constant (k2) indicated a lower rate of sorption of Cu2+ ions by zinc ferrite sample as compared to cobalt ferrite that can be caused by the diverse nature of sorption sites at ferrites surface due to different distribution of cations in the crystal lattice of normal (zinc ferrite) and inverse (cobalt ferrite) spinel. The isotherms of copper ions adsorption were described by models of Langmuir, Freundlich and BET. The best fit of experimental isotherms for zinc and cobalt ferrites were found within the frames of Freundlich and BET models. The models parameters evidenced at a higher affinity towards a sorbate and favorable conditions of sorption for the case of zinc ferrite in contrast to cobalt ferrite as well as the tendency of sorbents to polymolecular sorption of copper ions in the range of medium and high solution concentrations. At pH<3 sorption of Cu2+ by Co-F samples decreased, while it passed through the maximum at pH=3 that testified to a simultaneous sorption of hydroxonium along with Cu2+ as well as to a distinct charge of the ferrites surface. The sorption capacity of sorbents retained for five to six (zinc ferrite) and three to four (cobalt ferrite) sorption cycles without regeneration. After regeneration of spent sorbents with 0.1 М HCl, zinc ferrite sorbent renewed and maintained its capacity constant, while cobalt ferrite sorbent loosed its capacity. The application of Nd magnet resulted in complete magnetic separation of cobalt ferrite and partial separation in the case of zinc ferrite sorbent.
Downloads
References
Faraji M., Shirani M., Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. TrAC Trends in Ana-lytical Chemistry. 2021; 141: 116302. https://doi.org/10.1016/j.trac.2021.116302.
Dabagh Sh., Haris S.A., Ertas Y.N. Engineered Polyethylene Glycol-Coated Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent. ACS Biomaterials Science & Engi-neering. 2023; 9(7). https://doi.org/10.1021/acsbio-materials.3c00255
Khodosova N., Novikova L., Tomina E., Belchinskaya L., Zhabin A., Kurkin N., Krupskaya V., Zakusina O., Koroleva T., Tyupina E., et al. Magnetic Nanosorbents Based on Bentonite and CoFe2O4 Spinel. Minerals. 2022; 12: 1474. https://doi.org/10.3390/min12111474
Tomina E., Novikova L., Kotova A., Meshcheryakova A., Krupskaya V., Moro-zov I., Koroleva T., Tyupina E., Perov N., Alekhina Y. ZnFe2O4/Zeolite Nanocompo-sites for Sorption Extraction of Cu2+ from Aqueous Medium. AppliedChem. 2023; 3: 452-476. https://doi.org/10.3390/applied-chem3040029
Ali A., Shah T., Ullah R., Zhou P., Guo M., Ovais M., Tan Z., Rui Y. Review on Recent Progress in Magnetic Nanoparti-cles: Synthesis, Characterization, and Di-verse Applications. Front. Chem. 2021; 9: 629054. https://doi.org/10.3389/fchem.2021.629054
Osman A.I., El-Monaem E.M.A., El-garahy A.M. Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environ. Chem. Lett. 2023; 21: 2337-2398. https://doi.org/ 10.1007/s10311-023-01603-4
Chernyh Ja.Ju., Vereshhagina T.A., Mazurova E.V., Parfenov V.A., Solov'ev L.A., Vereshhagin S.N., Sharonova O.M. Magnitnye kompozitnye sorbenty dlja izvlechenija tjazhelyh metallov iz zhidkih othodov i ih immobilizacii v mine-ralopodobnoj matrice. Zhurnal SFU. Himija. 2019; 446-457. (In Russ.)
Tomina E.V., Khodosova N.A., Sinelnikov A.A., Zhabin A.V., Kurkin N.A., Novikova L.A. Influence of the method of formation a nanosized CoFe2O4/nontronite composite on its struc-ture and properties. Condensed Matter and Interphases. 2022; 24(3): 379-386. https://doi.org/10.17308/ kcmf.2022.24/9861
Liandi A.R., Cahyana A.H., Kusumah A.J.F., Lupitasari A., Alfariza D.N., Nu-raini R., Sari R.W., Kusumasari F.C. Re-cent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an envi-ronmen-tally friendly catalyst in multi-component re-actions: A review. Case Studies in Chemical and Environmental Engineering. 2023; 7: 100303. https://doi.org/10.1016/j.cscee.2023.100303
Tomina E.V., Kurkin N.A., Doro-shenko A.V. Sintez nanorazmernogo ferrita kobal'ta i ego kataliticheskie svojstva v Fen-tonopodobnyh processah. Neorganich-eskie materialy. 2022; 58(7): 727-732. (In Russ.)
Uddin Md.J., Jeong Y.-K. Applica-tion of magnesium ferrite nanomaterials for adsorptive removal of arsenic from water: Effects of Mg and Fe ratio. Chemosphere. 2022; 307(3): 135817. https://doi.org/ 10.1016/j.chemosphere.2022.135817
Goldman A. Crystal Structure of Fer-rites. In: Handbook of Modern Ferro-mag-netic Materials. The Springer Interna-tional Series in Engineering and Computer Sci-ence, 1999; 505. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4917-8_11
Shilpa Amulya M.A., Nagaswarupa H.P., Anil Kumar M.R., Ravikumar C.R., Prashantha S.C., Kusuma K.B. Sonochemi-cal synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Applied Surface Science Advances. 2020; 1: 100023. https://doi.org/10.1016/j.apsadv.2020.100023
Islam S., Md. Rahman L., Md. Moni R., Biswas B., Md. Ahmed, Nahid Sharmin F. Impacts of annealing temperature on mi-crostructure, optical and electromagnetic properties of zinc ferrites nanoparticles syn-thesized by polymer assisted sol-gel method. Arabian Journal of Chemistry. 2023; 16(10): 105186. https://doi.org/10.1016/ j.arabjc.2023.105186
Haiduk Yu.S., Korobko E.V., Ko-tikov D.A., Svito I.A., Usenka A.E., Pankov V.V. Preparation and characteriza-tion of cobalt and cobalt-zinc ferrites for magnetorheological materials. Kondensiro-vannye sredy I mezhfaznye granitsy. = Condensed Matter and Interphases. 2022; 24(1): 19-28. https://doi.org/10.17308/kcmf.2022.24/9051
Ghasemi A. Magnetic Ferrites and Related Nanocomposites, Elsevier, Amsterdam, Netherlands, 2022. 656 p.
Ivanets A., Prozorovich V., Roshchina M., Kouznetsova T., Budeiko N., Kulbitskaya L., Hosseini-Bandegharaei A., Masindi V., Pankov V. A comparative study on the synthesis of magnesium ferrite for the adsorption of metal ions: Insights into the essential role of crystallite size and sur-face hydroxyl groups. Chemical engi-neering journal. 2021; 411: 128523. https://doi.org/10.1016/j.cej.2021.128523 18. Simonescu C.M., Tătăruş A., Culiţă D.C., Stănică N., Butoi B., Kuncser A. Fac-ile Synthesis of Cobalt Ferrite (CoFe2O4) Nanoparticles in the Presence of Sodium Bis (2-ethyl-hexyl) Sulfosuccinate and Their Application in Dyes Removal from Single and Binary Aqueous Solutions. Na-nomateri-als. 2021; 11: 3128. https://doi.org/10.3390/ nano11113128
Tolmacheva V.V., Apjari V.V., Ko-chuk E.V., Dmitrienko S.G. Magnitnye sor-benty na osnove nanochastic oksidov zheleza dlja vydelenija i koncentrirovanija or-ganicheskih soedinenij. Zhurn. analit. himii. 2016; 71(4): 339-356. (In Russ.)
Debnath K., Pramanik A. Heteroge-neous bimetallic ZnFe2O4 nanopowder ca-ta-lysed facile four component reaction for the synthesis of spiro[indoline-3,2′-quinoline] derivatives from isatins in water medium. Tetrahedron Lett. 2015; 56(13): 1654-1660. https://doi.org/10.1016/j.tetlet.2015.02.030
Greg S., Sing K. Adsorbcija, udel'na-ja poverhnost', poristost' M., Mir, 1984, 306 p. (In Russ.)
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evalua-tion of surface area and pore size distribu-tion (IUPAC Technical Report). Pure Appl. Chem. 2015; 87(9-10): 1051-1069. https://doi.org/10.1515/pac-2014-1117
Tovbin Ju.K. Molekuljarnaja teorija adsorbcii v poristyh telah. M.: Fiz-matlit, 2012. 624 p. (In Russ.)
Donohue M.D., Aranovich G.L. Classification of Gibbs adsorption iso-therms. Advances in Colloid and Interface Science. 1998; 76-77, 137-152. https:// doi.org/10.1016/S0001-8686(98)00044-X
Adsorption Isotherms. In: Gas Ad-sorption Equilibria. Experimental Methods and Adsorptive Isotherms. Jürgen U. Kel-ler, Reiner Staudt. Springer, Boston, MA. 2005: 359-413. https://doi.org/10.1007/0-387-23598-1_8
Sing K.S.W., Williams R.T. Phy-sisorption Hysteresis Loops and the Charac-terization of Nanoporous Materials. Adsorp-tion Science & Technology. 2004; 22(10): 773-782.
Grozdov D., Zinicovscaia I. Mesopo-rous Materials for Metal-Laden Wastewater Treatment. Materials. 2023; 16(17): 5864. https://doi.org/10.3390/ma16175864.
Luzanova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. Application of zeolites in high-performance liquid chro-ma-tography. Sorbtsionnye I khromatograficheskie protsessy. 2023; 23(4): 691-704. (In Russ.) https://doi.org/10.17308/sorp-chrom.2023.23/11576
Barbosa F.F., de Oliveira Soares J., Miranda M.O., Torres M.A.M., Braga T.P. Catalysis Application of Magnetic Ferrites and Hexaferrites. In: Handbook of Magnet-ic Hybrid Nanoalloys and their Nanocom-po-sites, 2022. Springer, Cham. https://doi.org/ 10.1007/978-3-030-34007-0_48-1
Qin H., He Y., Xu P., Huang D., Wang Z., Wang H., Wang Z., Zhao Y., Tian Q., Wang Ch. Spinel ferrites (MFe2O4): Synthe-sis, improvement and catalytic application in environment and energy field. Advances in Colloid and In-terface Science. 2021; 294: 102486. https://doi.org/10.1016/ j.cis.2021.102486
Maji N., Dosanjh, H.S. Ferrite Nano-particles as Catalysts in Organic Reactions: A Mini Review. Magnetochemistry, 2023; 9: 156. https://doi.org/10.3390/magnetochemis-try9060156
León G., Hidalgo A.M., Martínez A., Guzmán M.A., Miguel B. Methylparaben Adsorption onto Activated Carbon and Ac-ti-vated Olive Stones: Comparative Analy-sis of Efficiency, Equilibrium, Kinetics and Ef-fect of Graphene-Based Nanomaterials Ad-dition. Appl. Sci. 2023; 13: 9147. https://doi.org/10.3390/app13169147
Krizhanovskaja O.O., Sinjaeva L.A., Karpov S.I., Selemenev V.F., Borodina E.V., Rjossner F. Kineticheskie modeli pri opisanii sorbcii zhirorastvorimyh fiziolog-icheski aktivnyh veshhestv vysokouporja-dochennymi neorganicheskimi kremnij-soderzhashhimi materialami. Sorbtsionnye i khromatograficheskie protsessy. 2014; 14(5): 784-794. (In Russ.)
Brandani S. Kinetics of liquid phase batch adsorption experiments. Adsorption. 2021; 27(3): 353-368. https://doi.org/ 10.1007/s10450-020-00258-9
Khamizov R.H., Sveshnikova D.A., Kucherova A.E., Sinjaeva L.A. Kinetich-eskaja model' sorbcionnyh processov v ogra-nichennom ob’eme: sravnenie raschetnyh i jeksperimental'nyh dannyh. Zhurnal fizi-cheskoj himii. 2018; 92(10): 1619-1625. https://doi.org/10.1134/S0044453718100114 (In Russ.)
Ebadi A., Soltan Mohammadzadeh J.S., Khudiev A. What is the correct form of BET isotherm for modeling liquid phase ad-sorption? Adsorption. 2009; 15(1): 65-73.
Kotova D.L., Vasil'eva S.Ju., Krysanova T.A. Equilibrium of the Acid-Activated System Clinoptilolite Tuff - Etha-nol Solution of β-Carotene. Sorbtsionnye i khromatograficheskie protsessy. 2014; 14(2): 190-196. (In Russ.)
Le D.T., Butyrskaja E.V., Volkov A.A., Gneushev A.S. Issledovanie adsorbcii jenantiomerov gistidina na uglerodnyh na-notrubkah v vodnom rastvore na osnove razlichnyh modelej adsorbcii. Sorbtsionnye i khromatograficheskie protsessy. 2022; 22(3): 235-242. https://doi.org/10.17308/ sorpchrom.2022.22/9330 (In Russ.)
Kumar M., Dosanjh H.S., Singh H. Removal of lead and copper metal ions in sin-gle and binary systems using biopoly-mer modified spinel ferrite. Journal of En-viron-mental Chemical Engineering. 2018; 6(5): 6194-6206. https://doi.org/10.1016/j.jece.2018.09.054
Taguba M.A.M., Ong D.C., Ensano B.M.B., Kan C.-C., Grisdanurak N., Yee J.-J., de Luna M.D.G. Nonlinear Isotherm and Kinetic Modeling of Cu(II) and Pb(II) Up-take from Water by MnFe2O4/Chitosan Nanoadsorbents. Water. 2021; 13: 1662. https://doi.org/10.3390/w13121662
Manimozhi V., Saravanathamizhan R., Sivakumar E. KT., Jaisankar V. Ad-sorp-tion Study of Heavy Metals Removal from Wastewater Using PVA-Nano Ferrite Com-posites. Int. J. Nanosci. Nanotechnol., 2020; 16(3): 189-200.
Chakraborty S., Menon D., Varri V.S.A., Sahoo M., Ranganathan R., Zhang P., Misra S.K. Does the doping strategy of fer-rite nanoparticles create a correlation between reactivity and toxicity? Environ. Sci.: Nano. 2023; 10: 1553-1569 https://doi.org/10.1039/D3EN00076A
de Vicente J., Delgado A.V., Plaza R.C., Durán J.D.G., González-Caballero F. Stability of Cobalt Ferrite Colloidal Parti-cles. Effect of pH and Applied Magnetic Fields. Langmuir. 2000; 16(21): 7954-7961. https://doi.org/10.1021/la0003490
Thandapani P., Viswanathan M.R., Denardin J.C. Magnetocaloric Effect and Universal Curve Behavior in Superpara-mag-netic Zinc Ferrite Nanoparticles Syn-thesized via Microwave Assisted Co-Precipitation Method. Phys. Status Solidi A. 2018; 1700842