Diffusion permeability of heterogeneous MK-40 membrane with different particle sizes of ion-exchange resin
Abstract
The main property of ion-exchange membranes is selectivity based on the membrane's ability to pass ions of the same charge while delaying ions of the opposite charge. By varying the composition and structure of membranes, diffusion permeability can be decreased, which will have a positive effect on their selectivity in the processes of electromembrane desalination and concentration. The paper presents a comparative analysis of the physico-chemical and diffusion properties of experimental samples of the heterogeneous sulphocation MK-40 exchange membrane (Innovative Enterprise Shchekinoazot, Russia). The goal of the work was to study the effect of changes in the particle size of ion-exchange resin on the diffusion properties of the membrane. There were three ranges of diameter of the ion-exchange resin grinding particles as declared by the manufacturer: <20 µm, 20-32 µm, and 56-71 µm. It was found that with an increase in the particle size of the ion-exchange resin, the moisture content decreased by 12%, and the total exchange capacity practically did not change. Meanwhile the thickness of the membranes in the dry and swollen states dropped by 4-5%. It was shown that an increase in the diameter of the ion-exchange resin grinding particles caused a decrease in the density of the diffusion flux of sodium chloride through the studied membranes. We obtained linear concentration dependences of the density of the salt diffusion flux in bilogarithmic coordinates with values of determination coefficients close to one. Using the data obtained, we determined the empirical coefficient β, the value of which indicated the convex shape of the sodium chloride concentration profile in the MK-40 membrane phase. With an increase in the diameter of the ion-exchange resin grinding particles from <20 to 56-71 µm, the value of the β coefficient increases from 1.14 to 1.20. Based on experimentally determined values of the integral coefficient of diffusion permeability and the coefficient β, we calculated the values of the differential coefficient of diffusion permeability of the membrane. The concentration dependences of the integral and differential coefficients of diffusion permeability of all studied experimental samples of the MK-40 membrane in a sodium chloride solution had a traditional increasing character. With an increase in the particle size of the ion-exchange resin, we found a decrease in the value of the differential coefficient of diffusion permeability by more than twice.
Downloads
References
Yaroslavtsev A.B., Nikonenko V.V., Zabolotskii V.I. Ionnyi perenos v mem-brannykh i ionoobmennykh materialakh. Uspekhi khimii. 2003; 72(5): 438-470. https://doi.org/10.1070/rc2003v072n05abeh000797 (In Russ.)
Vasil'eva V.I., Shaposhnik V.A., Grigorchuk O.V., Metaie M., Ovcharenko E.O. Raspredelenie kontsentratsii ami-nokislot pri diffuzii cherez kationoobmen-nuyu membranu. Zhurnal fizicheskoi khimii. 2000; 74(5): 937-941. (In Russ.)
Berezina N.P., Karpenko L.V. Perkolyatsionnye effekty v ionoobmennykh materialakh. Kolloidnyi zhurnal. 2000; 62(6): 749-757. (In Russ.)
Gnusin N.P., Parshikov S.B., Demina O.A. Reshenie zadachi elektrodiffuzion-nogo perenosa cherez ionoobmennuyu membranu pri proizvol'noi kontsentratsii vneshnego rastvora. Elektrokhimiya. 1998; 34(11): 1316-1319. (In Russ.)
Falina I. V., Demina O. A, Kononen-ko N. A., Myakinchenko I. A. A Model De-scription of Diffusion Permeability of Bi-layer Ion-Exchange Membranes. Colloid Journal. 2020; 82(2): 200-207. https://doi.org/10.1134/S1061933X20010044
Shutkina E. A., Nevakshenova E.E., Pis'menskaya N.D., Mareev S.A., Nikonen-ko V.V. Diffuzionnaya pronitsaemost' ani-onoobmennykh membran v rastvorakh digidrofosfata natriya. Kondensirovannye sredy i mezhfaznye granitsy. 2015; 17(4): 566-578. (In Russ.)
Yaroslavtsev A.B. [et al]. Membrany i membrannye tekhnologii. Moscow, Nauchnyi mir, 2013, 611 p. (In Russ.)
Nikolaev N.I. Diffuziya v membra-nakh. Moscow, Khimiya, 1980, 232 p.
Zabolotskii V.I., Nikonenko V.V. Perenos ionov v membranakh. Moscow, Nauka, 1996, 392 p. (In Russ.)
Kononenko N.A., Demina O.A., Lo-za N.V., Dolgopolov S.V., Timofeev S.V. Teoreticheskoe i eksperimental'noe issle-dovanie predel'nogo diffuzionnogo toka v sistemakh s modifitsirovannymi perftoriro-vannymi sul'fokationitovymi membranami. Elektrokhimiya. 2021; 57(5): 283-300. https://doi.org/10.31857/S0424857021050066 (In Russ.)
Zabolotskii V.I., Berezina N.P, Ni-konenko V.V., Shudrenko A.A. Razvitie membrannykh tekhnologii na osnove el-ektrodializa v Rossii. Nauka Kubani. 2010; 3: 4-10. (In Russ.)
Iordanskii A.L., Shterenzon A.L., Moiseev Yu.B., Zaikov G.E. Diffuziya el-ektrolitov v polimerakh. Uspekhi khimii. 1979; 48(8): 1460-1491. https://doi.org/10.1070/RC1979v048n08ABEH002411 (In Russ.)
Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. Characteriza-tion of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Science. 2008; 139(1-2): 3-28. https://doi.org/10.1016/j.cis.2008.01.002
Kononenko N.A., Demina O.A., Lo-za N.V., Falina I.V., Shkirskaya S.A. Membrannaya elektrokhimiya. Krasnodar, Kubanskii gosudarstvennyi universitet, 2015, 290 p. (In Russ.)
Vasil’eva V.I., Meshcheryakova E.E., Chernyshova O.I., Brovkina M.A., Falina I.V., Akberova E.M., Dobryden’ S.V. Transport and structural characteris-tics of heterogeneous ion-exchange mem-branes with varied dispersity of the ion ex-changer. Membranes and Membrane Tech-nologies. 2024; 6(2): 120-131. https://doi.org/10.1134/S2517751624020082
Dobryden' S. V., Vasil'eva V. I., Akberova E. M., Mamonov D. R., Bespalo-va Ya. R. Vliyanie razmera chastits sul'fo-kationoobmennoi smoly na fiziko-khimicheskie svoistva i morfologiyu poverkhnosti geterogennoi membrany MK-40. Kondensirovannye sredy i mezhfaznye granitsy. 2024; 26(2): 356-361. https://doi.org/10.17308/kcmf.2024.26/12044 (In Russ.)
Gnusin N.P., Berezina N.P., Shudrenko A.A., Ivina O.P. Diffuziya eletkrolita cherez ionoobmennye mem-brany. Zhurnal fizicheskoi khimii. 1994; 68(3): 565-570. (In Russ.)
Veisov B.K., Grebenyuk V.D. Dif-fuzionnaya pronitsaemost' geterogennykh ionitovykh membran MA-40 i MK-40. Khimiya i tekhnologiya vody. 1985; 7(3): 32-35. (In Russ.)
Gorobchenko A.D., Gil' V.V., Ni-konenko V.V., Sharafan M.V. Matematich-eskoe modelirovanie selektivnogo perenosa odnozaryadnykh ionov cherez mnog-osloinuyu kompozitnuyu ionoobmennuyu membranu v protsesse elektrodializa. Membrany i membrannye tekhnologii. 2022; 12(6): 480-490. https://doi.org/10.31857/S2218117222060049 (In Russ.)
Filippov A.N. Yacheechnaya model' ionoobmennoi membrany. El-ektrodiffuzionnyi koeffitsient i diffuzion-naya pronitsaemost'. Kolloidnyi zhurnal. 2021; 83(3): 360-372. https://doi.org/10.31857/S002329122103006X (In Russ.)
Berezina N.P. Elektrokhimiya membrannykh sistem. Krasnodar, Ku-banskii gosudarstvennyi universitet, 2009, 137 p. (In Russ.)