Diffusion dialysis of an aqueous solution of hydrochloric acid and iron (III) chloride using a heterogeneous anion exchange membrane Ralex AMH-PP

  • Olga A. Kozaderova Voronezh State University of Engineering Technologies, Voronezh, Voronezh State University, Voronezh, Russian Federation
  • Oleg A. Kozaderov Voronezh State University, Voronezh, Russian Federation
  • Tatyana I. Lyapina Voronezh State University, Voronezh, Russian Federation
Keywords: diffusion dialysis, heterogeneous anion exchange membrane, steel etching, PCB etching, hydrochloric acid, iron (III) chloride

Abstract

An experimental study and theoretical simulation of the diffusion transfer process during dialysis of an aqueous solution of hydrochloric acid and iron (III) chloride using a heterogeneous strongly basic anion exchange membrane Ralex AMH-PP with quaternary ammonium fixed groups has been carried out. Diffusion dialysis was performed in a two-chamber flow-through dialyzer in the recycle mode. The calculation of the ionic composition of the initial solution under study showed that Fe3+ is represented as [FeCl]2+, [FeCl2]+ and [FeCl3]. The concentration of hydrochloric acid in permeate and retentate was monitored using potentiometric and titrimetric methods, the iron (III) chloride content was determined by complexometric titration. The main characteristics of the diffusion transfer of HCl and iron (III) ions through the Ralex AMH-PP anion exchange membrane have been found. The diffusion flux of hydrochloric acid is 20-100 times higher than the flux of iron (III) salt, probably due to the higher mobility of the hydrogen ion both in solution and in the membrane, as well as to its less pronounced Donnan exclusion from the membrane phase. With a decrease in the molar ratio of hydrochloric acid and iron (III) chloride in the initial solution, diffusion dialysis becomes less effective. Numerical simulation of the diffusion dialysis process of the solution of hydrochloric acid and iron (III) chloride using COMSOL Multiphysics and the data on ion diffusion coefficients in the membrane determined by the electrical conductivity of the ion exchange membrane confirms the experimental results. It was found that Fe3+ ions are transported through an anion exchange membrane mainly in the composition of [FeCl2]+ ions. Decrease in the share of [FeCl]2+ and Fe3+ in the total flux of iron (III) ions may be due to both their low concentration in the feed solution and their rather high charge. A block diagram of the regeneration process of spent hydrochloric acid pickling solution using diffusion dialysis is proposed, which includes the return of HCl solution obtained during dialysis to the early stages of the process, as well as the possibility of using iron (III) salt-enriched retentate for etching copper printed circuit boards.

Downloads

Download data is not yet available.

Author Biographies

Olga A. Kozaderova, Voronezh State University of Engineering Technologies, Voronezh, Voronezh State University, Voronezh, Russian Federation

Dr. Sci. (Chem.), Professor of the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh; Assоciate Professor of the Physical Chemistry Department, Department of Chemistry, Voronezh State University, Voronezh, Russian Federation, E-mail: kozaderova-olga@mail.ru

Oleg A. Kozaderov, Voronezh State University, Voronezh, Russian Federation

Dr. Sci. (Chem.), Senior Researcher, Laboratory of organic additives for the processes of chemical and electrochemical deposition of metals and alloys used in the electronics industry, Voronezh State University, Voronezh, Russian Federation, E-mail: ok@chem.vsu.ru

Tatyana I. Lyapina, Voronezh State University, Voronezh, Russian Federation

student of the Department of Physical Chemistry, Voronezh State University, Voronezh, Russian Federation

References

Braun T.M., Josell D., Silva M., Kil-don J., Moffat T.P. Effect of chloride con-centration on copper deposition in through silicon vias. J. Electrochem. Soc. 2019; 166: D3259. https://doi.org/10.1149/2.0341901jes

Yusfin Yu.S., Pashkov N.F. Metal-lurgiya zheleza. Moskva, Akademkniga, 2007, 464 p. (In Russ.)

Zaplatin V.N., Sapozhnikov Yu.I., Dubov A.V., Dukhneev E.M. Osnovy mate-rialovedeniya (metalloobrabotka). Moskva, Akademiya, 2017, 272 p. (In Russ.)

Grilikhes S.Ya. Obezzhirivanie, travlenie i polirovanie metallov. Leningrad, Mashinostroenie, 1983, 101 p. (In Russ.)

Bekkert M. Sposoby metallur-gicheskogo travleniya. M., Metallurgiya, 1988, 400 p. (In Russ.)

Yampol'skii A.M. Travlenie metallov. M., Metallurgiya, 1980, 168 p. (In Russ.)

Katsko A.S. Issledovanie sostava rast-vorov travleniya staleprokatnykh zavodov. «Khimiya i fizika – XXI vek. Teoriya, praktika, obrazovanie», sbornik materialov V Vserossiiskoi nauch.-prakt. konf. s mezhdunarodnym uchastiem, 18-19 maya 2022 g., Bryansk, 2022: 85-87. (In Russ.)

Kibartas D.V., Senyuta A.S., Smirnov A.A., Bayanov V.A., Ordo S.F. Patent RF, № 2752352, 2021. (In Russ.)

Khomyakova E.N., Pashayan A.A., Lukuttsova N.P. Ispol'zovanie travil'nykh rastvorov staleprokatnykh zavodov v kachestve dobavok dlya betona. «Effek-tivnye stroitel'nye kompozity», sbornik trudov nauch.-prakt. konf. k 85-letiyu zasl. deyat. nauki RF, akad. RAASN, d.t.n. Ba-zhenova Yuriya Mikhailovicha, 2-3 aprelya 2015 g., Belgorod, 2015: 729-733. (In Russ.)

Pashayan A.A., Khomyakova E.N. Novyi sposob utilizatsii otrabotannykh travil'nykh rastvorov staleprokatnykh za-vodov. «Fundamental'nye i prikladnye is-sledovaniya v oblasti khimii i ekologii – 2018», materialy mezhdunarodnoi nauch.-prakt. konf., 24-26 sentyabrya 2018 g., Kursk, 2018: 198-200. (In Russ.)

Pashayan A.A., Khomyakova E.N., Aminov D.O. Resursosberegayushchie tekhnologii utilizatsii rastvorov travleniya stali. «Resursosberezhenie i ekologiya stroitel'nykh materialov, izdelii i kon-struktsii», sbornik nauchnykh trudov 2-i Mezhd. nauch.-prakt. konf., 1 oktyabrya 2019 g., Kursk, 2019, 2, 39-42. (In Russ.)

Aksenov V.I., Nichkova I.I., Nikulin V.A., Petsura S.S., Ibragimova N.M. Utili-zatsiya otrabotannykh solyanokislykh zhelezosoderzhashchikh travil'nykh stokov v protsesse obezvozhivaniya osadkov bio-khimicheskikh ochistnykh sooruzhenii. Vo-doochistka. Vodopodgotovka. Vodosnab-zhenie. 2010; 33: 38-40. (In Russ.)

Vasil'eva V.I., Saud A.M., Akberova E.M. Effect of the mass fraction of ion-exchange resin in a Ralex CM cation-exchange membrane on demineralization of phenylalanine aqueous salt solutions by neutralization dialysis. Membranes and Membrane Technologies. 2021; 3(2): 98-106. https://doi.org/10.1134/S2517751621020074

Loza S., Loza N., Kovalchuk N., Romanyuk N., Loza Ju. Comparative study of different ion-exchange membrane types in diffusion dialysis for the separation of sulfuric acid and nickel sulfate. Mem-branes. 2023; 13(4): 396. https://doi.org/10.3390/membranes13040396

Kozaderova O.A., Kalinina S.A., Morgacheva E.A., Niftaliev S.I. Sorption characteristics and diffusion permeability of the MA-41 anion-exchange membrane in lactic acid solutions. Sorbtsionnye I khromatograficheskie protsessy. 2021; 21(3): 317-325. https://doi.org/10.17308/sorpchrom.2021.21/3465

Kozaderova O.A., Kozaderov O.A., Niftaliev S.I. Electromass transfer in the system “cation exchange membrane-ammonium nitrate solution”. Membranes. 2022; 12(11): 1144. https://doi.org/10.3390/membranes12111144

Palatý, Z., Žáková, A., Doleček, P. Modelling the transport of Cl− ions through the anion-exchange membrane NEOSEP-TA-AFN // Journal of Membrane Science. 2000. Vol. 165. № 2. P. 237-249. https://doi.org/10.1016/s0376-7388(99)00239-2

Luo, J., Wu, C., Wu, Y., Xu, T. Dif-fusion dialysis of hydrochloric acid with their salts: effect of co-existence metal ions. Separation and Purification Technol-ogy. 2013; 118: 716-722. https://doi.org/10.1016/j.seppur.2013.08.014

Gueccia R., Randazzo S., Chillura Martino D., Cipollina A., Micale G. Exper-imental investigation and modeling of dif-fusion dialysis for HCl recovery from waste pickling solution. Journal of Environmen-tal Management. 2019; 235: 202-212. https://doi.org/10.1016/j.jenvman.2019.01.028

AO MEGA. Available at: https://www.mega.cz/membranes (accessed 21 September 2024).

Zhang C., Zhang W., Wang Y. Dif-fusion dialysis for acid recovery from acid-ic waste solutions: anion exchange mem-branes and technology integration. Mem-branes. 2020; 169: 1-24. https://doi.org/10.3390/membranes10080169

Lur'e Yu.Yu. Spravochnik po anali-ticheskoi khimii. Moskva, Khimiya, 1989, 448 p. (In Russ.)

Kozaderova O.A., Shaposhnik V.A. Kinetic parameters of ion-exchange mem-brane in amino acid solutions. Russian Journal of Electrochemistry. 2004; 40(7): 698-703. https://doi.org/10.1023/B:RUEL.0000035251.04661.f7

Volkov A.I., Zharskii I.M. Bol'shoi khimicheskii spravochnik. Minsk, Sov-remennaya shkola, 2005, 603 p. (In Russ.)

Published
2024-12-09
How to Cite
Kozaderova, O. A., Kozaderov, O. A., & Lyapina, T. I. (2024). Diffusion dialysis of an aqueous solution of hydrochloric acid and iron (III) chloride using a heterogeneous anion exchange membrane Ralex AMH-PP. Sorbtsionnye I Khromatograficheskie Protsessy, 24(5), 775-785. https://doi.org/10.17308/sorpchrom.2024.24/12516