Electrical conductivity and diffusion permeability of anion exchange membranes in solutions of sodium chloride and succinic acid
Abstract
The physico-mechanical and transport characteristics of heterogeneous anion exchange membranes Ralex AMH Pes and MA-41, and homogeneous anion exchange membrane AHT in solutions of sodium chloride and succinic acid are investigated. Analysis of the data reveals that the moisture content of the anion exchange membranes Ralex AMH Pes and MA-41 in succinic acid form is two times lower than in Cl- form, and 3.6 times lower for the AHT membrane. This difference is attributed to the higher hydration and larger effective radius of chloride anions compared to succinate anions. Analysis of the data obtained in sodium chloride solutions within the framework of the microheterogenic model showed that the proportion of interhelic gaps in heterogeneous electrodialysis membranes Ralex AMH Pes and MA-41 is 0.12 and 0.15, respectively, while the proportion of interhelic in the ANT membrane is two times less and is 0.06, which explains its low diffusion permeability. The parameter α, reflecting the relative arrangement of conductive and non-conductive phases in all membranes, is approximately 0.3, suggesting a disordered arrangement of the gel and inter-gel phases. It is observed that in succinic acid solutions, the concentration-dependent behavior of the specific electrical conductivity of anion-exchange membranes deviates from the typical trend seen in solutions of strong electrolytes. This deviation is attributed to variations in pH and ionic composition within the membrane compared to the external solution. The concentration-dependent trend of the integral coefficient of diffusion permeability of anion-exchange membranes in succinic acid solution shows a decreasing pattern. This trend is explained by the pH shift towards a more alkaline region within the homogeneous membrane upon dilution of the external solution, leading to an equilibrium shift towards the formation of a two-charge form. With an increase in the proportion of double-charged ions in the membrane phase, an increase in electrostatic forces capable of attracting ions of the opposite charge sign occurs, thus, an increase in the concentration of co-ions in the membrane phase occurs. This effect leads to an increase in the rate of diffusion transfer of the succinic acid molecule with a decrease in its concentration in the working solution.
Downloads
References
Jiang S., Sun H., Wang H., Ladewig B.P., Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere. 2021; 282: 130817. https://doi.org/10.1016/j.chemosphere.2021.130817
Titova S.T., Komogorova A.R., Kolganova T.S., Yurova P.A., Parshina A.V., Bobreshova O.V. Composite membranes MF-4SC/polyanilinefor potentiometric determination of tetracaine in aqueoussolutions. Sorbtsionnye i khromatograficheskie protsessy, 2022; 22(5): 568-579. https://doi.org/10.17308/sorpchrom.2022.22/10648 (In Russ.)
Nazif A., Karkhanechi H., Saljoughi E., Mousavi S.M. Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review. J. Water Process Eng., 2022; 47(1): 102706. https://doi.org/10.1016/j.jwpe.2022.102706
Nghiem N., Kleff S., Schwegmann S. Stefan succinic acid: technology development and commercialization. Fermentation, 2017; 3(2):26. https://doi.org/10.3390/fermentation3020026
Saxena R.K., Saran S., Isar J., Kaushik R. Production and applications of succinic acid. In current developments in biotechnology and bioengineering, 2017; 601-630. https://doi.org/10.1016/B978-0-444-63662-1.00027-0
Milev A.S., Kannangara K., Wilson M. Kirk-Othmer encyclopedia of chemical technology. 5th Ed. New York, Wiley Blac, 2004, p. 22950. https://doi.org/10.1002/0471238961.1401141522010904.a01.pub2
Escanciano I.A., Wojtusik M., Esteban J., Ladero M. Modeling the succinic acid bioprocess: A review. Fermentation, 2022; 8(8): 368. https://doi.org/10.3390/fermentation8080368
McKinlay J. B, Vieille C., Zeikus J G. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol., 2007; 76: 727-740. https://doi.org/10.1007/s00253-007-1057-y
Cao Y., Zhang R., Sun C., Cheng T., Liu Y., Xian M. Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed. Res. Ind., 2013; 1-12. https://doi.org/10.1155/2013/723412
Kurzrock T., Weuster-Botz D. Recovery of succinic acid from fermentation broth. Biotechnol Lett., 2010; 32(3): 331-339. https://doi.org/10.1007/s10529-009-0163-6
Apelblat A. Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liq., 2002; 95(2): 99-145. https://doi.org/10.1016/S0167-7322(01)00281-1
Berezina N.P., Kononenko N.A., Dvorkina G.A., Sheldeshov N.V. Physico-chemical properties of ion-exchange materials. Krasnodar. KubSU, 1999, p. 82. (In Russ.)
Shutkina E.A., Nevakshenova E.E., Pismenskaya N.D., Mareev S.A., Nikonenko V.V. Diffusion permeability of the anion-exchange membranes in sodium dihydrogen phosphate solution. Kondensirovannye sredy i mezhfaznye granitsy, 2015; 15(4): 566-578. (In Russ.)
Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. Characterization of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Sci., 2008. 139(1-2): 3-28. https://doi.org/10.1016/j.cis.2008.01.002
Demina O.A., Falina I.V., Kononenko N.A. Model description of conductivity of ion–exchange membranes in a wide range of concentrations of electrolyte solution. Rus. J. Electrochem., 2015; 51(6): 561-565.
Belashova E.D., Minakova E.A., Kharchenko O.A., Pismenskaya N.D. Influence of structural changes on current-voltage characteristics of the anion exchange membrane after their long contact with an ampholyte solution. Sorbtsionnye i khromatograficheskie protsessy, 2016; 16(5): 653-662. (In Russ.)
Melnikov S., Kolot D., Nosova E., Zabolotskiy V. Peculiarities of transport-structural parameters of ion-exchange membranes in solutions containing anions of carboxylic acids. J. Memb. Sci., 2018; 557. https://doi.org/10.1016/j.memsci.2018.04.017
Pismenskaya N., Laktionov E., Nikonenko V., El Attar A., Auclair B., Pourcelly G. Dependence of composition of anion-exchange membranes and their electrical conductivity on concentration of sodium salts of carbonic and phosphoric acids. J. Memb. Sci., 2001; 181(2): 185-179. https://doi.org/10.1016/S0376-7388(00)00529-9
Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. Unusual Concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: effect of ampholyte nature. J. Membr. Sci., 2015; 479: 28-38, https://doi.org/10.1016/j.memsci.2015.01.015
Franck-Lacaze L., Sistat Ph., Huguet P. Determination of the pKa of Poly (4-Vinylpyridine)-Based weak anion exchange membranes for the investigation of the side proton leakage. J. Memb. Sci., 2009; 326(2): 650-658. https://doi.org/10.1016/j.memsci.2008.10.054
Kozaderova O.A., Kalinina S.A., Morgacheva E.A., Niftaliev S.I. Sorption characteristics and diffusion permeability of the ma-41 anion-exchange membrane in lactic acid solutions. Sorbtsionnye i khromatograficheskie protsessy, 2021; 21(3): 317-325. https://doi.org/10.17308/sorpchrom.2021.21/3465 (In Russ.)
Pismenskaya N., Sarapulova V., Klevtsova A., Mikhaylin S., Bazinet L. Adsorption of anthocyanins by cation and anion exchange resins with aromatic and aliphatic polymer matrices. Int. J. Mol. Sci., 2020; 21(21): 1-26. https://doi.org/10.3390/ijms21217874
Chmielewska A., Bald A. Viscosimetric studies of aqueous solutions of dicarboxylic acids. J. Molecular Liquids, 2008; 137(1-3): 116-121. https://doi.org/10.1007/s10953-010-9621-y
Vasil'eva V.I., Vorob'Eva E.A. Dynamics of the separation of amino acid and mineral salt in the stationary dialysis of solutions with an MK-40 profiled sulfo group cation exchange membrane. Rus. J. Physical Chemistry A., 2012; 86(11): 1726-1731. https://doi.org/10.1134/S0036024412110271




