Investigation of wastes wood processing as adsorbents for wastewater treatment from polychlorobiphenyls

Keywords: sorption, polychlorobiphenyls, linden sawdust, common pine sawdust, gas chromatography, sorption kinet-ics, sorption isotherms

Abstract

Waste of plant origin (sawdust, bark, peel, etc.) is a promising material for use as sorbents in the purification of aquatic media from pollutants of various nature. Polychlorinated biphenyls (PCBs) are among the most widespread anthropogenic pollutants in natural and industrial facilities. PCBs have toxic properties and pose a high risk to the environment and public health. The aim of the work was to study the possibility of using sorbents based on natural lignocellulose-containing raw materials (sawdust from pine and linden wood) for use as PCB sorbents in the purification of aqueous media. The concentration of PCBs in aqueous solutions before and after sorption was determined by gas chromatography with flame ionization detection. The sorbents studied showed high efficiency in the extraction of a PCB mixture: the maximum sorption capacity at an initial PCB concentration of 50 mg/dm3 for a sorbent based on pine sawdust is 2500 mg/g, for a sorbent based on linden sawdust –  2384 mg/g. It is shown that the highest degree of PCB recovery is achieved by adding 20 g/dm3 of sawdust with a particle size of 0.75-2.00 mm. Complete recovery of PCBs is observed in 4 days when using pine sawdust, while when using sawdust from linden wood, even after 14 days, the recovery rate is only 94%. Sorption kinetics has been studied and it has been established that the kinetic parameters of sorption correspond to the pseudo-second-order model. The adsorption isotherms were processed using the Langmuir, Freundlich, Temkin, and Dubinin-Radradkevich models. It is shown that for both sorbents, the sorption process is best described by the Langmuir model. The parameter values calculated on the basis of the values of the equation constants these models indicated a high degree of adsorbate affinity to the surface of the adsorbents under study, the PCB sorption process is not spontaneous with the formation of a monolayer structure and mainly physical sorption of PCB molecules on the surface of sorbents takes place.

Downloads

Download data is not yet available.

Author Biographies

Marina G. Pervova, I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg

senior researcher, Laboratory of Organofluorine Compounds, Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia, e-mail: pervova@ios.uran.ru

Maria A. Samorukova, I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg

ведущий инженер-исследователь, лаборатория фторорганических соединений, Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург, Россия

Daniil Yu. Dvoryankin, Ural State Forestry Engineering University, Yekaterinburg

master's student, Department of  Physical and Chemical Technologies in environmental engineering, Ural State Forest Engineering University, Yekaterinburg, Russia, e-mail: daniil.dvoryankin.02@mail.ru

Inna G. Pervova, Ural State Forestry Engineering University, Yekaterinburg

professor of chemistry, Department of  Physical and Chemical Technologies in environmental engineering, Ural State Forest Engineering University, Yekaterinburg, Russia, e-mail: pervovaig@m.usfeu.ru

Victor I. Saloutin, I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, Eka-terinburg

head Laboratory of Organofluorine Compounds, Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia, e-mail: saloutin@ios.uran.ru

References

Treger Yu. A., Stojkie organicheskie zag-ryazniteli. Problemy i puti ih resheniya, Vestnik MITHT, 2011; 6 (5): 87-97. (In Russ.)

Montano L., Pironti C., Pinto G., Ric-ciardi M., Buono A., Brogna C., Venier M., Piscopo M., Amoresano A., Motta O., Polychlorinated biphenyls (PCBs) in the environ-ment: occupational and exposure events, ef-fects on human health and fertility, Toxics., 2022; 10 (7): 365. https://doi.org/10.3390/toxics10070365

Melymuk L., Blumenthal J., Sáňka O., Shu-Yin A., Singla V., Šebková K., Fedinick K.P., Diamond M.L., Persistent Problem: Global Challenges to Managing PCBs, Envi-ron. Sci. Technol., 2022; 56 (12): 9029-9040. https://doi.org/10.1021/acs.est.2c01204

Hale S.E., Kwon S., Ghosh U., Werner D., Polychlorinated biphenyl sorption to acti-vated carbon and the attenuation caused by sediment, Global NEST Journal, 2010; 12 (3): 318-326.

Deng B., Zhou X., Yang X., Dang Z., Lu G., Removal of polychlorinated biphenyls and recycling of tween-80 in soil washing eluents, Desalinat. Water Treatment, 2017; 64: 109-117. https://doi.org/10.5004/dwt.2017.0235

Tanabe S., PCB problems in the future: foresight from current knowledge, Environ. Pollution, 1988; 50: 5-28.

Kryatov I.A., Avhimenko M.M., Tsap-kova N.N., Polihlorirovannye bifenily i di-oksiny – opasnye i persistentnye zagryazniteli okruzhayushchej sredy (obzor), Gigiena i sani-tariya, 1991; 2: 68-72. (In Russ.)

Yao M., Li Z., Zhang X., Lei L., Polychlorinated biphenyls in the centralized wastewater treatment plant in a chemical indus-try zone: source, distribution, and removal, J. Chem., 2014; 2014: 352675. https://doi.org/10.1155/2014/352675

Fairey J.L., Wahman D.G., Lowry G.V., Effects of natural organic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications, J. Environ. Quality, 2010; 39: 1359-1368. https://doi.org/10.2134/jeq2009.0505

Ryoo K.S., Kim T.D., Kim Y.H., Ad-sorption of specific organics in water on GAC and regeneration of GAC by countercurrent oxidative reaction, Bull. Korean Chem. Soc., 2002; 23: 817-823.

Ghosh U., Weber S.A., Jensen J. N., Smith J.R., Granular activated carbon and bio-logical activated carbon treatment of dissolved and sorbed polychlorinated biphenyls, Water Environ. Research, 1999; 71(2): 232-240. https://doi.org/10.2175/106143098X121761

Binglu D., Xingqiu Z., Xingjian Y., Zhi D., Guining L., Removal of polychlorinated biphenyls and recycling of tween-80 in soil washing eluents, Desalinat. Water Treatment, 2017; 64: 109-117. https://doi.org/10.5004/dwt.2017.0235

Zhou Y., Miao D., Gomez-Eyles L.J., Ghosh U., Bi M., Li J., Ren F., Comparative study on polychlorinated biphenyl sorption to activated carbon and biochar and the influence of natural organic matter, Chemosphere, 2022; 287: 1-9. https://doi.org/10.1016/j.chemosphere.2021.132239

Amstaetter K., Eak E., Cornelissen G., Sorption of PAHs and PCBs to activated car-bon: coal versus biomass-based quality, Chem-osphere, 2012; 87(5): 573-578. https://doi.org/10.1016/j.chemosphere.2012.01.007

Huang S., Bao J., Shan M., Qin H., Wang H., Yu X., Chen J., Xu Q., Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as af-fected by soil organic carbon content, Chemo-sphere, 2018; 211: 120-127. https://doi.org/10.1016/j.chemosphere.2018.07.133

Ben'ko E.M., Lunin V.V., Adsorbciya metilenovogo golubogo na lignocellyuloznyh rastitel'nyh materialah, Zhurnal fizicheskoj himii, 2018; 92(9): 1465-1469. (In Russ.)

GOST 13144-79 Grafit. Metody opre-deleniya udel'noj poverhnosti. Izdatel'stvo standartov. 1999.7 p. (In Russ.)

Mills III S. A., Thal D.I., Barney J., A summary of the 209 PCB congener nomencla-ture, Chemosphere, 2007; 68(9): 1603-1612.

Kawashima A., Matsumoto N., Honda K., Effects of manufacturing conditions on the adsorption capacity of dioxin-like polychlorin-ated biphenyl by bamboo charcoal and activat-ed carbon, J. Environ. Chem., 2012; 22(1): 9-14.

Dvoryankin D. Yu., Pervova I. G., Maslakova T. I., Klepalova I. A., Issledovanie fiziko-himicheskih harakteristik modificiro-vannyh uglerodnyh sorbentov na osnove drevesnyh othodov, Sorbcionnye i hromato-graficheskie processy, 2023; 23(5): 868-878. https://doi.org/10.17308/sorpchrom.2023.23/11721. (In Russ.)

Ho Y.S., McKay G., Kinetic models for the sorption of dye from aqueous solution by wood, Trans IChemE, 1998; 76(B): 183-191.

Ho Y.S., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochem., 1999; 34: 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5

Nandiyanto A.B.D., Nugraha V.K., Yustia I., Ragadhita R., Fiandini M., Mejrinavati H., Vulan D.R., Izoterma i kinet-icheskaya adsorbciya chastic risovoj sheluhi kak model'nogo adsorbenta dlya resheniya problem ustojchivoj dobychi zolota v rezul'tate vyshchelachivaniya rtuti, Zapiski Gornogo in-stituta, 2024; 265: 104-120. (In Russ.)

Greg S., Sing K. Adsorbciya. Udel'naya poverhnost'. Poristost'. Moscow, Mir Publ., 1984, 306 p. (In Russ.)

Adamova L.V. Sorbcionnyj metod is-sledovaniya poristoj struktury nanomaterialov i udel'noj poverhnosti nanorazmernyh sistem: uchebnoe posobie. Ekaterinburg, UrGU im. A.M. Gor'kogo Publ., 2008, 62 p. (In Russ.)

Galimova R.Z., Shajhiev I.G., Sverguzova S.V. Obrabotka rezul'tatov issle-dovaniya processov adsorbcii s ispol'zovaniem programmnogo obespecheniya Microsoft Ex-cel: praktikum: uchebnoe posobie. Kazan'‒Belgorod, BGTU Publ., 2017, 60 p. (In Russ.)

Ragadhita R., Nandiyanto A.B.D., How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations, Indonesian J. Sci. Tech-nol., 2021; 6(1): 205-234. https://doi.org/10.17509/ijost.v6i1.32354

Published
2025-04-04
How to Cite
Pervova, M. G., Samorukova, M. A., Dvoryankin, D. Y., Pervova, I. G., & Saloutin, V. I. (2025). Investigation of wastes wood processing as adsorbents for wastewater treatment from polychlorobiphenyls. Sorbtsionnye I Khromatograficheskie Protsessy, 25(1), 56-65. Retrieved from https://journals.vsu.ru/sorpchrom/article/view/12794