Estimation of the π–π interactions of aromatic amino acids in the phase of solution and sorbent using quantum chemical modeling

  • Elizaveta R. Ovsyannikova Voronezh State University, Voronezh, Russian Federation
  • Vladimir Yu. Khokhlov Voronezh State University, Voronezh, Russian Federation
  • Oksana N. Khokhlova Voronezh State University, Voronezh, Russian Federation
Keywords: amino acid, π–π interactions, quantum chemical modeling

Abstract

Quantum chemical modeling of the π–π interactions between amino acids with an aromatic radical in their structure in various phases is carried out in this work. Aromatic amino acids phenylalanine and tryptophan and sorbents with a hydrophobic aromatic matrix, such as styrene-divinylbenzene ion exchangers and super-crosslinked sorbents based on this polymer, were studied. Quantum chemical modeling was performed using the Gaussian 09 program using the DFT electron density functional method with a hybrid B3LYP functional and a 6-31G++(d,p) basis with GD3 correction using the PCM method with correction of the superposition error of the basic set (BSSE) according to the Beuys–Bernardi procedure.

As established by modeling amino acid dimers in solution, the energy values and geometry obtained are consistent with the classical concepts of the π–π bond. The phenylalanine dimer formed by the π–π interactions of the benzene rings of the side radical can exist in two variants – a parallel offset and a T-shaped arrangement of the benzene rings. Tryptophan is characterized by the existence of three dimer variants. In addition to the two mentioned, a T–shaped "heteroatom ring" variant is implemented, in which one of the tryptophan molecules is oriented by the heteroatom of the side radical (the nitrogen atom of the indole cycle) to the center of the benzene ring of the side radical of the other tryptophan molecule. The parallel offset arrangement option is more advantageous for both amino acids, however, the T-shaped "heteroatom ring" variant characteristic of tryptophan is also characterized by high energy, which distinguishes this amino acid and requires consideration when studying various systems with its participation.

Whenmodeling the formation of the secondsorptionlayerdue to π–πsorbate–sorbateinteractions, systemsconsistingofthreesorbentmatrixelementparticlesandtwoamino acid molecules are considered. As aresult of modelingsystemswith the participation of phenylalanineinallmethods of combiningstartingfragments, it is shownthatstructureswithparallelarrangement of rings are formed,displacedrelative to each other.Whenmodeling the secondtryptophansorptionlayerin the sorbent, it was found thatadoubleT-shapedarrangementinvolvingsix-and five-memberedsideradicalcyclesofbothamino acid moleculesor a structureformedfromthreetriangularT-interactions of tryptophanradicals is realized.

It has been found that the formation of π–π bonds in a multiparticle system is energetically more advantageous than the formation of a single bond, since the number of π–electrons involved in the formation of a single multilayer π-electron system is greater, while multiple π–π interactions are least affected by substituents in the benzene ring.

Downloads

Download data is not yet available.

Author Biographies

Elizaveta R. Ovsyannikova, Voronezh State University, Voronezh, Russian Federation

the postgraduate student, department of analytical chemistry, chemical faculty, Voronezh State University, Voronezh, Russian Federation, e-mail: kashirtseva_e@mail.ru

Vladimir Yu. Khokhlov, Voronezh State University, Voronezh, Russian Federation

professor, department of analytical chemistry, chemical faculty, Voronezh State University, Voronezh, Russian Federation, e-mail: vladkh70@mail.ru

Oksana N. Khokhlova, Voronezh State University, Voronezh, Russian Federation

associate professor, department of analytical chemistry, chemical faculty, Voronezh State University, Voronezh, Russian Federation, e-mail: okxox@yandex.ru

References

Dougherty D.A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp, Science, 1996; 271(5246): 163-168. https://doi.org/10.1126/science.271.5246.163

HU Xin-Gen, YU Li, LIN Rui-Sen, FANG Ying-Ying, LI Wen-Bing. Study on Hydrophobic Self-association of Aliphatic α-amino Acids by Flow Microcalorimetry, J. Acta Phys.-Chim. Sin, 2006; 22(08):1034-1039. https://doi.org/10.3866/PKU.WHXB20060825

Trunaeva E.S., Khokhlova O.N., Khokhlov V.Yu. Kvantovo-himicheskoe modelirovanie gidratacii i associacii fenila-lanina v rastvore. J. of Structural Chemis-try, 2015; 56(6): 1111-1115. (In Russ.)

Akher F.B., Ebrahimi A., Mostafavi N. Characterization of π-stacking interactions between aromatic amino acids and quercetagetin, J. Mol. Struct. 2017; 1128: 13-20. http://dx.doi.org/10.1016/j.molstruc.2016.08.040

Huber R.G., Margreiter M.A., Fuchs J.E., S. von Grafenstein, Tautermann C.S., Liedl K.R., Fox T. Heteroaromatic π-Stacking Energy Landscapes, J. Chem. Inf. Model, 2014;54(5):1371-1379. https://doi.org/10.1021/ci500183u

Khokhlova O.N., Kashirtseva E.R., Khokhlov V.Yu., Trunaeva E.S. Nonex-change sorption of amino acids on an AV-17 anion exchanger: quantum-chemical simulation, J. Phys. Chem. A., 2021; 95(4): 762-768. https://doi.org/10.1134/S0036024421040130

Khokhlova O.N., Kashirtseva E.R., Khokhlov V.Yu., Lisitsyna S.A. Some Fea-tures of Non-Exchangeable Sorption of Tryptophan: The Role of Polar and π–π In-teractions, J. Phys. Chem. A, 2024; 98: 2757-2762. https://doi.org/10.1134/S0036024424701991

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Carica-to M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnen-berg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09. Rev. D.01. Gaussian, Inc., Wallingford CT, 2016.

Tsuzuki S., Honda K., Uchimaru T., Mikami M., Tanabe K. Origin of attraction and directionality of the p/p interaction: model chemistry calculations of benzene dimer interaction, J. Am. Chem. Soc., 2002; 124(1): 104-112. https://doi.org/10.1021/ja0105212

Waller M.P., Robertazzi A., Platts J.A., Hibbs d. E., Williams P.A. Hybrid Density Functional theory for рi-stacking interactions: application to benzenes, pyri-dines, and DNA bases, J. Comput. Chem., 2006; 27(4): 491-50. https://doi.org/10.1002/jcc.20363.

Nechaeva L.S., Butyrskaja E.V., Zaprjagaev S.A. Komp'juternoe modeliro-vanie sorbcii aminokislot na uglerodnyh nanotrubkah. J. of Structural Chemistry, 2017; 58(2): 233-241. https://doi.org/10.15372/JSC20170201 (In Russ.)

McGaughey G.B., Gagnép M., Rap-pé A. K. Stacking Interactions. Аlive and well in proteins, J. of biological chem., 1998; 273 (25): 15458–15463. https://doi.org/10.1074/jbc.273.25.15458.

Zhao Y., Li J., Gu H.et al. Confor-mational Preferences of π–π Stacking Be-tween Ligand and Protein, Analysis De-rived from Crystal Structure Data Geomet-ric Preference of π–π Interaction, Interdis-cip. Sci.: Comput. Life Sci., 2015; 7: 211–220. https://doi.org/10.1007/s12539-015-0263-z

McCoy V.R., Chong P.A., Tsang B., Kim T.H., Bah A., Farber P., Lin H., For-man-Kay J. D. Pi-Pi contacts are an over-looked protein feature relevant to phase separation, eLife 7: e31486., 2018; 1-48. https://doi.org/10.7554/eLife.31486

Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands, J. Chem. Soc., 2000; 21: 3885-3896. https://doi.org/10.1039/B003010O

Lee K., Hong J Nonionic adsorption of aromatic amino acids on a cation-exchange resin, Reactive and Functional Polymers, 1995; 28(1): 75-80.

Selemenev V.F., Khohlov V.Ju., Bobreshova O.V. et al. Fiziko-himicheskie osnovy sorbcionnyh i membrannyh metod-ov vydelenija i razdelenija aminokislot. M.: Stelajt, 2002, 299 p. (In Russ.)

Mechkovskij S.A., Vejze M.A., Lipaj E.V., Molotok E.V. Jeffekty sverhjekvivalentnoj sorbcii v processah ka-tionnogo obmena, Vybranyja naukovyja pracy BDU. Minsk, 2001, pp. 548-554. (In Russ.)

Khohlova O.N., Khohlov V.Ju., Bashlykova O.Ju., Trunaeva E.S. Ter-modinamika sverhjekvivalentnoj sorbcii v mnogokomponentnyh ionoobmennyh sistemah s uchastiem aminokislot, J. Phys. Chem., 2017; 91(4): 725-729. DOI: 10.7868/S0044453717040124

Gapeev A.A., Bondareva L.P., Astapov A.V., Kornienko T. S. Hydration and sorption of amino acids by an imino-phosphonic ion exchanger, Prot Met Phys Chem Surf, 2016; 52: 689–694. https://doi.org/10.1134/S2070205116040110

Yan Yao, Abraham M Lenhoff. Pore size distributions of ion exchangers and relation to protein binding capacity, J Chromatogr A., 2006; 1126 (1-2): 107-119. https://doi.org/10.1016/j.chroma.2006.06.057

Kenneth A. Kun, Robert Kunin. The pore structure of macroreticular ion ex-change resins, Journal of Polymer Science Part C: Polymer Symposia, 1967; 16(3): 1457-1469 https://doi.org/10.1002/polc.5070160323

Selemenev V.F., Khohlov V.Ju., Matveeva M.V., Chikin G.A., Ustinovskij V.A. Porometricheskij analiz ionoobmen-nikov, nasyshhennyh aminokislotami, J. Phys. Chem., 1996; 70(2): 370-373

Published
2025-06-15
How to Cite
Ovsyannikova, E. R., Khokhlov, V. Y., & Khokhlova, O. N. (2025). Estimation of the π–π interactions of aromatic amino acids in the phase of solution and sorbent using quantum chemical modeling. Sorbtsionnye I Khromatograficheskie Protsessy, 25(2), 188-197. https://doi.org/10.17308/sorpchrom.2025.25/12958