Adsorption of cesium ions from aqueous solutions on modified clay of the Levashinsky deposit of the Republic of Dagestan
Abstract
The problem of extracting and concentrating of rare alkali (Rb+, Cs+) and alkaline earth metals (Sr2+) arises both during the development of geothermal waters and during the purification of natural and wastewater from nuclear power plants from long-lived radionuclides. The need for effective sorbents to solve these problems makes it urgent to expand the range of raw materials for sorbents based on mineral raw materials. Among natural sorbents for purifying solutions from cesium radionuclides, clays of different compositions have proven themselves well, and it is noted that illite has the greatest selectivity to Cs+, the content of which in the native clay of the Levashinsky deposit of the Republic of Dagestan is ~ 32%. An important task is to find effective methods for improving the physicochemical properties and sorption characteristics of natural raw materials, which involves treating the original clay with various acids (mainly HCl) and salts (Na+, K+, Ca2+, Fe2+). The purpose of this work is studying the sorption properties of clay from the Levashinsky deposit of the Republic of Dagestan modified with sodium chloride for Cs+ ions. The work used a technique for modifying the original clay with sodium chloride, which involves preliminary acid activation of the original clay. The study of ion adsorption was carried out in model solutions in a limited volume, varying the concentration of the studied ions in solutions from 5 to 700 mg/dm3. It was found that treatment of the studied clay, previously subjected to acid activation, with a NaCl solution leads to an increase in its sorption capacity for Cs+ by ~ 1.3 times and promotes the involvement of highly selective with respect to Cs+ ions FES centers (Frayed Edge Sites) in the adsorption process. The influence of the ionic strength of the solution and the concentration of individual ions on the sorption of cesium has been established.
Downloads
References
Osvoenie geothermal’noj energii /Red. V.E. Fortov. M., FIZMATLIT. 2022. 320 p. (In Russ.)
Efremov R.V., Ivanov V.V., Bus-areva E.A. Zagryaznenie vodnoj i vozdush-noj sredy obitaniya radioaktivnymi vesh-chestvami. Zhurnal tekhnicheskih issledo-vanij. 2018; 4: 1-5. (In Russ.)
Krupskaya V.V., Biryukov D.V., Belousov P.E. Primenenie prirodnyh glin-istyh materialov dlya povysheniya urovnya yadernoj i radiacionnoj bezopasnosti ob"ektov yadernogo naslediya. Radioak-tivnye othody. 2018; 2: 30-43. (In Russ)
Baeyens B., Bradbury M.H., Cation exchange capacity measurements on illite using the sodium and cesium isotope dilu-tion technique: effects of the index cation, electrolyte concentration and competition: modeling, Clays and Clay Miner., 2004; 52(4): 421-431. https://doi.org/10.1346/CCMN.2004.0520403
Fuller A.J., Shaw S., Ward M. B. Caesium incorporation and retention in illite interlayers, Appl. Clay Sci., 2015; 108: 128-134.
Konopleva I.V., Selektivnaya sorbciya radioceziya sorbentami na osnove prirodnyh glin, Sorbtsionnye i khromatograficheskie protsessy, 2016; 16(4): 448-456. (In Russ.)
Hwang J., Han W.S. Choung S. et al, Diverse sorption capacities an end con-tribution of multiple sorbtive sites on illitic clays to assess the immobilization of dis-solved cesium in subsurface environments, J. Hazard. Mater., 2023; 441: Art. 129973. https://doi.org/10.1016/j.jhazmat.2022.129973
Sveshnikova D.A., Rabadanova D.I., Ataev D.R., Ramazanov A.Sh., Physi-co-chemical and sorption properties of original and modified clay from the Levashinskoye deposit of the Republic of Dagestan, Sorbtsionnye khromatografich-eskie protsessy, 2023; 23(6): 993-1005. (In Russ.) https://doi.org/10.17308/sorpchrom.2023.23/11860
Benedicto A., Missana T., Fernan-dez A.M., Interlayer collapse affects on cesium adsorption onto illite, Environ. Sci. Technol., 2014; 48: 4909-4915. https://doi.org/10.1021/es5003346
Hwang J., Choung S., Shin W. et al, A batch experiment of cesium uptake using illitic clays with different degrees of crys-tallinity, Water, 2021; 13: 409-420. https://doi.org/10.3390/w13040409
Giacobbo F., Pezzoli F., Cydzik I. Study of caesium adsorption onto alluvial sediments from the Italian Po Plain, Int. J. Environ. Sci. Technol., 2024; https://doi.org/10.1007/s13762-024-05814-2
Cornell R.M., Adsorption of cesium on minerals: a review, J. Radioanalyt. Nucl. Chem., 1993; 171(2): 483-500. https://doi.org/10.1007/BF02219872
Milyutin V.V., Vezencev A.I., Sokolovskij P.V., Nekrasov N.A., Sorbciya radionuklidov ceziya iz vodnyh rastvorov na prirodnyh i modificirovannyh glinah, Sorbtsionnye i khromatograficheskie protsessy, 2014; 14(5): 879-883. (In Russ.)
Missana T., Benedicto A., García-Gutiérrez M., Alonso U., Modeling cesium retention onto Na-, K- and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients, Geochim. Cosmo-chim. Acta, 2014; 128: 266-277. https://doi.org/10.1016/j.gca.2013.10.007
Belchinskaya L.I., Kozlov K.A., Bondarenko A.V., Petukhova G.A., Protsessy ionnogo obmena pri obrabotke kislotnoaktivirovannogo montmorillonite rastvorom MgCl2, Sorbtsionnye i khroma-tograficheskie protsessy, 2007; 7: 895-901 (In Russ.)
Noh J., Schwarz J., Estimation of the point of zero charge of simple oxides by mass titration, J. Colloid and Interface Sci., 1989; 130(1): 157-164.
Bendou S., Amrani M. Effect of Hydrochloric acid on structural of sodium -bentonite clay. J. Mineral. Mater. Charac-ter. Eng. 2014; 2: 404-413. http://dx.doi.org/10.4236/jmmce.2014.25045
Vezencev A.I., Korol'kova S.V., Buhanov V.D. Teksturnye harakteristiki i sorbcionnye svojstva prirodnoj i magnij-zameshchennoj montmorillonit soderzhashchej gliny. Nauchnye vedomosti BelGU. Seriya Estestvennye nauki. 2010; 9(80); 11: 119-123.
Sobina E.P. Sovershenstvovanie sistemy metrologicheskogo obespecheniya sredstv izmerenij poristosti i pronicaemosti tverdyh veshchestv i materialov Avtoref-erat dissertacii dok. tekhn. nauk. Spe-cial'nost' 05.11.15. Ekaterinburg. 2020. 48 p.
Kwon S., Kim Y., Roh Y. Cesium removal using acid- and base-actived bio-tite and illite. J. Hazard. Mater. 2021; 401: 123319. https://doi.org/10.1016/j.jhazmat.2020.123319
Foo K.Y., Hameed B.H., Insights in-to modelling of adsorption isotherm sys-tems, Chem. Eng. J., 2010; 156: 2-10. https://doi.org/10.1016/j.cej.2009.09.013
Rysev A.P. Razrabotka metoda reg-ulirovaniya adsorbtsbtsionnoj sposobnosti prirodnogo montmorillonita dlya izvlech-eniya anionnykh primesei iz vodnykh rastvorov. Diss. cand. chem. nauk. M., 2021, 153 p. (in Russ.)
Abdel-Karim A-A.M., Zaki A.A., Elwan W. et al, Experimental and model-ing investigations of cesium and strontium adsorption onto clay of radioactive waste disposal, Appl. Clay Sci., 2016; 132-133: 391-401. https://doi.org/10.1016/j.clay.2016.07.005
Streba J.H., Sperrer H., Walenko F., Welch J.M., Adsorption characteristics of clinoptilolite-rich zeolite compound for Sr and Cs, J. Radioanal. Nucl. Chem., 2018; 318: 267-270. https://doi.org/10.1007/s10967-018-6096-6
Missana T., García-Gutiérrez M., Benedicto A. et al, Modeling of Cs sorption in natural mixed-clays and the effects of ion competition, Appl. Geochem., 2014; 49: 95-102. https://doi.org/10.1016/j.apgeochem.2014.06.011
Durrant Ch. B., Begg J.D., Kersting A. B., Zavarin M., Cesium sorption revers-ibility and kinetics on illite, montmorillo-nite, and kaolinite, Sci. Tot. Environ., 2018; 610-611: 511-520. https://doi.org/10.1016/j.scitotenv.2017.08.122




