Study of sorption and toxicological properties of porous silicon nanoparticles with precipitated cinnarizine

  • Yulia A. Polkovnikova Voronezh State University, Voronezh, Russia
  • Alexandr S. Lenshin Voronezh State University, Voronezh, Russia
  • Alexandr Yu. Kuznetsov Voronezh State University, Voronezh, Russia
  • Vera E. Frolova Voronezh State University, Voronezh, Russia
  • Evelina P. Domashevskaya Voronezh State University, Voronezh, Russia
Keywords: porous silicon, silicon nanoparticles, ciliate Paramecium caudatum, sorption, desorption, acute toxicity, chronic toxicity, biological activity index

Abstract

Low solubility, leading to insignificant dissolution in the gastrointestinal tract, is the main problem for drugs intended for oral use. One of such drugs is cinnarizine. Cinnarizine drugs on the pharmaceutical market are represented by immediate-release drugs, characterized by low absorption and low bioavailability. In order to increase solubility, the issue of using silicon nanoparticles is currently relevant.

The purpose of this study is to study the features of sorption-desorption of cinnarizine from the surface of porous silicon, to study the acute and chronic toxicity of porous silicon nanoparticles without cinnarizine and with precipitated cinnarizine, in the functional load test on ciliates Paramecium caudatum.

Samples of macro- and mesoporous silicon were obtained by two-sided anodic electrochemical etching of single-crystal silicon. After mechanical and ultrasonic grinding of the porous layer, the average size of silicon nanoparticles was ~10-20 nm.

The processes of sorption-desorption of cinnarizine from the surface of macro- and mesoporous silicon were studied by dialysis through a semipermeable membrane. The optimal time of adsorption of cinnarizine on the surface of macro- and mesoporous silicon was 30 minutes. When studying the desorption of cinnarizine from the surface of por-Si, it was found that after 45 minutes of the experiment, the concentration of cinnarizine in a medium of 0.1 M hydrochloric acid was 0.73 and 0.51 mg/ml, respectively. When studying the acute and chronic toxicity of porous silicon nanoparticles with precipitated cinnarizine on a test object from the type of protozoan ciliates Paramecium caudatum, it was found that mesoporous silicon nanoparticles increase the viability of paramecia in a functional load test without exhibiting toxic effects towards them, while mesoporous silicon nanoparticles with precipitated cinnarizine can reduce the viability of ciliates.

Downloads

Download data is not yet available.

Author Biographies

Yulia A. Polkovnikova, Voronezh State University, Voronezh, Russia

DSc in Pharmacy, Associate Professor of the Department of Pharmaceutical Technology, Voronezh State University, Voronezh, Russian Federation, e-mail: juli-polk@mail.ru

Alexandr S. Lenshin, Voronezh State University, Voronezh, Russia

Dr.Sci. (Phys.–Math.), Leading Researcher, Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation, e-mail: lenshinas@mail.ru

Alexandr Yu. Kuznetsov, Voronezh State University, Voronezh, Russia

assistant of the Department of Pharmacology and Clinical Pharmacology, Faculty of Pharmacy, Voronezh State University, Voronezh, Russia, e-mail: cuznetsov.aleksandr04@yandex.ru

Vera E. Frolova, Voronezh State University, Voronezh, Russia

Cand. Sci. (Phys.–Math.), ass. Prof., Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation, e-mail: ternovaya@phys.vsu.ru

Evelina P. Domashevskaya, Voronezh State University, Voronezh, Russia

Dr. Sci. (Phys.–Math.), Full Professor, Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation, e-mail: ftt@phys.vsu.ru

References

Gu C.-H., Rao D., Gandhi R. B., Hilden J., Raghavan K. Using a novel multicompart-ment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. Journal of Phar-maceutical Sciences. 2005; 94(1): 199-208. https://doi.org/10.1002/jps.20242

Scholtz A.W., Hahn A., Stefflova B., Medzhidieva D., Ryazantsev S.V., Paschinin A., Kunelskaya N., Schumacher K., Weisshaar G. Efficacy and Safety of a Fixed Combination of Cinnarizine 20 mg and Dimenhydrinate 40 mg vs Betahistine Dihydrochloride 16 mg in Patients with Peripheral Vestibular Vertigo: A Prospective, Multinational, Multicenter, Dou-ble-Blind, Randomized, Non-inferiority Clini-cal Trial. Clin Drug Investig. 2019;39(11):1045-1056. https://doi.org/10.1007/s40261-019-00858-6

Ivanova L., Nikolov R., Tsikalova P., Nikolova M. Ex-perimental rheoencephalo-graphic studies on the effect of the cinnarizin analogue As2 on cerebral circulation. Acta Physiol Pharmacol Bulg. 1979;5(2):47-52.

Asadi P., Zia Ziabari S.M., Majdi A., Vatanparast K., Naseri Alavi S.A. Cinnariz-ine/betahistine combination vs. the respective monotherapies in acute peripheral vertigo: a randomized tripleblind placebo-controlled trial. Eur J Clin Pharmacol. 2019;75(11):1513-1519. https://doi.org/10.1007/s00228-019-02741-x

Shakeel F., Kazi M., Alanazi F.K., Alam P. Solubility of Cinnarizine in (Transcutol + Water) Mixtures: Determination, Hansen Solu-bility Parameters, Correlation, and Thermody-namics. Molecules. 2021;26(22):7052. https://doi.org/10.3390/molecules26227052

Raghuvanshi S., Pathak K. Recent ad-vances in delivery systems and therapeutics of cinnarizine: a poorly water soluble drug with absorption window in stomach. J Drug Deliv. 2014; 2014: 479246. https://doi.org/10.1155/2014/479246

Polkovnikova Y.A., Lenshin A.S., Seredin P.V., Minakov D.A. Porous silicon nanoparticles containing neurotropic drugs. Inorganic Materials. 2017;53(5): 477-483. https://doi.org/10.1134/S0020168517050156

Eremina A.S., Kargina Y.V., Kharin A.Y., Timoshenko V.Y., Petukhov D.I. Meso-porous silicon nanoparticles covered with peg molecules by mechanical grinding in aqueous suspensions. Microporous and Mesoporous Materials. 2022; 331: 111641. https://doi.org/10.1016/j.micromeso.2021.111641

Canham L.T. Silicon Quantum Wire Ar-ray Fabrication by Electrochemical and Chemi-cal Dissolution of Wafers. Appl. Phys. Lett. 1990; 57(10): 1046-1048.

Park J.-H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S. N.; Sailor M. J. Biode-gradable Luminescent Porous Silicon Nanopar-ticles for in Vivo Applications. Nat. Mater. 2009; 8(4): 331-336.

Qi S., Zhang P., Ma M., Yao M., Wu J., Mäkilä E., Salonen J., Ruskoaho H., Xu Y. Santos H. A.; Zhang H. Cellular Internaliza-tion–Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Pro-tein-Mediated Protection of Stem Cells. Small. 2019;5(1):1804332. https://doi.org/10.1002/smll.201804332

Yan J., Siwakoti P., Shaw S., Bose S., Kokil G., Kumeria T. Porous silicon and silica carriers for delivery of peptide therapeutics. Drug Deliv Transl Res. 2024;14(12):3549-3567. https://doi.org/10.1007/s13346-024-01609-7

Maximchik P.V., Tamarov K., Sheval E.V., Tolstik E., Kirchberger-Tolstik T., Yang Z., Sivakov V., Zhivotovsky B., Osminkina L.A. Biodegradable porous silicon nanocon-tainers as an effective drug carrier for regula-tion of the tumor cell death pathways. ACS Bi-omater Sci Eng. 2019; 5: 6063-6071. https://doi.org/10.1021/acsbiomaterials.9b01292

Wang F., Hui H., Barnes T.J., Barnett C., Prestidge C.A. Oxidized mesoporous sili-con microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm. 2010; 7: 227-236 https://doi.org/10.1021/mp900221e

Chew T.L., Ahmad A.L., Bhatia S. Or-dered mesoporous silica (OMS) as an adsor-bent and membrane for separation of carbon dioxide (CO2). Adv Colloid Interface Sci. 2010; 153(1-2): 43-57. https://doi.org/10.1016/j.cis.2009.12.001

Li W., Liu Z., Fontana F., Ding Y., Liu D., Hirvonen J.T., Santos H.A. Tailoring po-rous silicon for biomedical applications: from drug delivery to cancer immunotherapy. Adv Mater. 2018; 30: 1703740. https://doi.org/10.1002/adma.201703740

Peng F., Cao Z., Ji X., Chu B, Su Y., He Y. Silicon nanostructures for cancer diag-nosis and therapy. Nanomedicine (Lond). 2015; 10: 2109-2023. https://doi.org/10.2217/nnm.15.53

Santos H.A., Mäkilä E., Airaksinen A.J., Bimbo L.M., Hirvonen J. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine (Lond). 2014; 9(4): 535-54. https://doi.org/10.2217/nnm.13.223

Bakshi S., Pandey P., Mohammed Y., Wang J., Sailor M.J., Popat A., Parekh H.S., Kumeria T. Porous silicon embedded in a thermoresponsive hydrogel for intranasal deliv-ery of lipophilic drugs to treat rhinosinusitis. J Control Release. 2023; 363: 452-463. https://doi.org/10.1016/j.jconrel.2023.09.045

Kilpelainen M., Riikonen J., Vlasova M.A., Huotari A., Lehto V.P., Salonen J., Her-zig K.H., Jarvinen K. ¨ In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J. Control. Release. 2009; 137: 166-170.

Ferreira M.P., Ranjan S., Correia A.M., Mäkilä E.M., Kinnunen S.M., Zhang H., Shahbazi M.A., Almeida PV, Salonen J.J., Ruskoaho H.J., Airaksinen A.J., Hirvonen J.T., Santos H.A. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Bi-omaterials. 2016; 94: 93-104. https://doi.org/10.1016/j.biomaterials.2016.03.046

Buzlama A. V., Nikolaevskiy V. A., Chernov Yu. N., Slivkin A. I. Preclinical stud-ies of medicinal substances. Moscow: GE-OTAR-Media; 2017. 383 p. (In Russ.)

Andreev V.A., Andreeva E.Yu., Erdniev L.P., Stepanov Y.A., Mikshta A.Yu., Mok-shanov I.V., Ermolaeva I.A., Stepanova N.V., Apchel V. .I. Using the Paramecium caudatum test object to determine the acute toxicity of physiologically active substances. Bulletin of the russian military medical academy. 2019; 21(2): 110-113. https://doi.org/10.17816/brmma25929(In Russ.)

Rao J.V., Gunda V.G., Srikanth K., Arepalli S.K. Acute toxicity bioassay using Paramecium caudatum, a key member to study the effects of monocrotophos on swimming behaviour, morphology and reproduction. Toxi-cological & Environmental Chemistry. 2007; 89(2): 307-317. https://doi.org/10.1080/02772240601010071

State Pharmacopoeia of the Russian Federation XV [Electronic edition]. Access mode: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/ (In Russ.)

Lenshin A.S., Kashkarov V.M., Seredin P.V., Agapov B.L., Minakov D.A., Tsipenyuk V.N., Domashevskaya E.P. Optical characteris-tics of various structures of porous silicon. Zhurnal tehnicheskoj fiziki. 2014; 84(2): 70-75. (In Russ.)

Lenshin A.S., Kashkarov V.M., Go-loshchapov D.L., Seredin P.V., Polumestnaya K.A., Maraeva E.V., Soldatenko S.A., Yurakov Yu.A., Domashevskaya E.P. Compo-sition and reactivity of porous silicon na-nopowders. Inorganic Materials. 2012; 48(10): 1091-1096. (In Russ.)

Shabunin S.V., Buzlama V.S., Erma-kova T.I., Meshcheryakov N.P., Buzlama S.V., Buzlama A.V., Trutaev I. V., Dolgopolov V.N., Maksimova L. N. Screening of biostimu-lating and biocidal substances (adaptogens, bactericides and other drugs). Moscow - Voronezh. All-Russian Research Veterinary Insti-tute of Pathology, Pharmacology and Therapy. 2006. 51 p. (In Russ.)]

Lenshin A.S., Peshkov Ya.A., Cher-nousova O.V., Barkov K.A., Kannykin S.V. Influence of etching modes on the morphology and composition of the surface of multilayer porous silicon. Fizika i tehnika poluprovodni-kov. 2023; 57(8): 613-616. https://doi.org/10.61011/FTP.2023.08.56953.4966C (In Russ.)

Lenshin A.S., Peshkov Ya.A., Cher-nousova O.V., Kannykin S.V., Grechkina M.V., Minakov D.A., Zolotukhin D.S., Agapov B.L. Influence of etching modes on the porosity of layers and photoluminescence of multilayer porous silicon. Optical journal. 2024; 91(11): 100-106. https://doi.org/10.17586/1023-5086-2024-91-11-100-106 (In Russ.)

Vinokhodov D.O. Scientific foundations of biotesting using ciliates: author's abstract. diss. … Doctor of Biological Sciences. Saint Petersburg. 2007. 45 p. (In Russ.)

Published
2025-06-15
How to Cite
Polkovnikova, Y. A., Lenshin, A. S., Kuznetsov, A. Y., Frolova, V. E., & Domashevskaya, E. P. (2025). Study of sorption and toxicological properties of porous silicon nanoparticles with precipitated cinnarizine. Sorbtsionnye I Khromatograficheskie Protsessy, 25(2), 211-222. https://doi.org/10.17308/sorpchrom.2025.25/12960