Selective determination of hydrogen by temperature modulation of a semiconductor sensor

  • Alexey V. Shaposhnik Voronezh State Agrarian University, Voronezh
  • Pavel V. Moskalev Moscow State University of Technology “STANKIN”, Moscow
  • Olesya A. Arefieva Scientific and Production Association “Pribor”, St. Petersburg
  • Alexey A. Zviagin Voronezh State Agrarian University, Voronezh
  • Olga V. Dyakonova Voronezh State Agrarian University, Voronezh
  • Alexey A. Vasiliev Dubna State University, Dubna
Keywords: hydrogen, semiconductor sensor, selective analysis, temperature modulation.

Abstract

There are practical tasks for the selective determination of hydrogen using compact, inexpensive sensor analyzers capable of operating offline for a long time in hard-to-reach places. However, there are currently no highly selective hydrogen sensors, and electronic nose devices that allow for qualitative and quantitative analysis using a set of several low-selective sensors consume a lot of electricity and require the use of a computer for data processing. The task of selective detection can be solved using a single sensor, which is low-selective in stationary mode, but with temperature modulation allows the gas analytes to show their individuality.

The transition from stationary mode to temperature modulation leads to the transformation of the sensory response from a scalar value to a vector one. Methods such as PCA (principal component analysis) or MLP (multilayer perceptron) are successfully used to process arrays of vector data, but their implementation requires fairly powerful microprocessors. Meanwhile, to create inexpensive compact gas analyzers, it is more rational to use less productive but more energy-efficient microcontrollers. Thus, the task arises of creating a simple algorithm for processing vector data that can be implemented in a standard microcontroller with limited computing capabilities.

In this paper, experimental data were obtained on the temperature modulation of a semiconductor gas sensor based on SnO2 with the addition of 3% palladium in the form of PdO in a hydrogen medium of various concentrations, as well as in other gaseous media. All the data was divided into two groups – a training sample was compiled from the first group, and the second group was reserved for tests. The concentrations of gases in the two samples did not match – this was done in order to complicate the task of selective analysis.

The algorithm we developed made it possible to solve the problem of selective gas detection without errors – all test experiments gave correct answers to the questions of qualitative analysis.

Downloads

Download data is not yet available.

Author Biographies

Alexey V. Shaposhnik, Voronezh State Agrarian University, Voronezh

Doctor of Chemistry, Head of the Department of Chemistry at the Voronezh State Agrarian University, Voronezh, Russian Federation, E-mail: a.v.shaposhnik@gmail.com

Pavel V. Moskalev, Moscow State University of Technology “STANKIN”, Moscow

Doctor of Physical and Mathematical Sciences, Professor of the Department of Applied Mathematics at the Moscow State University of Technology "STANKIN", Moscow, Russian Federation, E-mail: moskalefff@gmail.com

Olesya A. Arefieva, Scientific and Production Association “Pribor”, St. Petersburg

researcher of Joint-Stock-Company Scientific and Production Association "Pribor", Saint Petersburg, Russian Federation

Alexey A. Zviagin, Voronezh State Agrarian University, Voronezh

Candidate of Chemical Sciences. Associate Professor of Department of Chemistry Voronezh State Agrarian University, Voronezh, Russian Federation, E-mail: a.a.zviagin@rambler.ru

Olga V. Dyakonova, Voronezh State Agrarian University, Voronezh

Candidate of Chemical Sciences. Associate Professor of the Department of Chemistry at the Voronezh State Agrarian University, Voronezh, Russian Federation, E-mail: dyakol@yandex.ru

Alexey A. Vasiliev, Dubna State University, Dubna

Doctor of Technical Sciences, Professor of the State University "Dubna", Dubna, Russian Federation

References

Fetisov V.; Davardoost H.; Mogylevets V. Technological Aspects of Methane–Hydrogen Mixture Transportation through Operating Gas Pipelines Considering Industrial and Fire Safety. Fire 2023; 6(10): 410. https://doi.org/10.3390/fire6100409

Cai L.; Zhu S.; Wu G.; Jiao, F.; Li W.; Wang X.; An Y.; Hu Y.; Sun J.; Dong X. et al. Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostructure. Int. J. Hydrogen Energy 2020; 45: 31327-31340. https://doi.org/10.1016/j.ijhydene.2020.08.109

Mineo G.; Moulaee K.; Neri G.; Mirabella S.; Bruno E. H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods. Sensors Actuators B Chem. 2021; 348: 130704. https://doi.org/10.1016/j.snb.2021.130704

Zhou R.; Lin X.; Xue D.; Zong F.; Zhang J.; Duan X.; Li Q.; Wang T. Sensors and Actuators B : Chemical Enhanced H2 gas sensing properties by Pd-loaded urchin-like W 18 O 49 hierarchical nanostructures. Sensors Actuators B. Chem. 2018; 260: 900-907. https://doi.org/10.1016/j.snb.2018.01.104

Kim H.; Pak Y.; Jeong,Y.; Kim W.; Kim J.; Young G. Sensors and Actuators B : Chemical Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability. Sensors Actuators B. Chem. 2018; 262: 460-468. https://doi.org/10.1016/j.snb.2018.02.025

Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles. Int. J. Hydrogen Energy 2022; 47: 3157-3169. https://doi.org/10.1016/j.ijhydene.2021.10.201

Liewhiran, C.; Tamaekong, N.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Ultra-sensitive H2+ sensors based on flame-spray-made Pd-loaded SnO2+ sensing films. Sensors Actuators, B Chem. 2013; 176: 893-905. https://doi.org/10.1016/j.snb.2012.10.087

Qiu, T.; Zhou, S.; Ji, J.; Wu, G.; Yan, W.; Ling, M.; Liang, C. High performance H2 sensor based on rGO-wrapped SnO2–Pd porous hollow spheres. Ceram. Int. 2022; 48: 15056-15063. https://doi.org/10.1016/j.ceramint.2022.02.034

Zhang, S.; Yin, C.; Yang, L.; Zhang, Z.; Han, Z. Sensors and Actuators B : Chemical Investigation of the H 2 sensing properties of multilayer mesoporous pure and Pd-doped SnO 2 thin fi lm. Sensors Actuators B. Chem. 2019; 283: 399-406, https://doi.org/10.1016/j.snb.2018.12.051

Meng, X.; Bi, M.; Gao, W. Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sensors Actuators B Chem. 2022; 370; 132406. https://doi.org/10.1016/j.snb.2022.132406

Weh T., Fleischer M., Meixner H. Optimization of physical filtering for selective high temperature H 2 sensors. Sensors and Actuators B. 2000; 68: 146-150.

Fleischer, M., Seth, M., Kohl, C., Meixner, H.P. A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sensors and Actuators B. 1996; 36: 297-302.

Meng X., Zhang Q., Zhang S., He Z. The Enhanced H2 Selectivity of SnO2 Gas Sensors with the Deposited SiO2 Filters on Surface of the Sensors. Sensors. 2019;19: 2478.

Layer M. Hydrogen Sensing Performance of ZnO Schottky Diodes in Humid Ambient Conditions with PMMA. Sensors. 2020; 20: 835.

Yakovlev P.V., Shaposhnik A.V., Voishchev V.S., Kotov V.V., Ryabtsev S.V.. Determination of gases using polymercoated semiconductor sensors. J. Anal. Chem. 2002; 57(3): 276-279. https://doi.org/10.1023/A:1014412919822

Huo, L.; Yang, X.; Liu, Z.; Tian, X.; Qi, T.; Wang, X.; Yu, K.; Sun, J.; Fan, M. Sensors and Actuators B : Chemical Modulation of potential barrier heights in Co 3 O 4 / SnO2 heterojunctions for highly H2 -selective sensors. Sensors Actuators B. Chem. 2017; 244: 694-700. https://doi.org/10.1016/j.snb.2017.01.061

Shaposhnik, A. V.; Moskalev, P. V.; Arefieva, O.A.; Zvyagin, A.A.; Kul, O. V.; Vasiliev, A.A. Selective determination of hydrogen in a mixture with methane using a single metal oxide sensor. Int. J. Hydrogen Energy 2024; 82: 523-530. https://doi.org/10.1016/j.ijhydene.2024.07.379

Krivetskiy, V.; Efitorov, A.; Arkhipenko, A.; Vladimirova, S.; Rumyantseva, M.; Dolenko, S.; Gaskov, A. Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode. Sensors Actuators, B Chem. 2018; 254: 502-513. https://doi.org/10.1016/j.snb.2017.07.100

Shaposhnik, A.V.; Moskalev, P.V.; Zviagin, A.A.; Duykova, M.V.; Ryabtsev, S.V.; Ghareeb, D.A.A.; Vasiliev, A.A. Selective determination of hydrogen sulfide using SnO2–Ag sensor working in non-stationary temperature regime. Chemosensors 2021; 9: 203. https://doi.org/10.3390/chemosensors9080203

Shaposhnik, A.V.; Moskalev, P.V.; Chegereva, K.L.; Zviagin, A.A.; Vasiliev, A.A. Selective gas detection of H2 and CO by a single MOX-sensor. Sensors Actuators, B Chem. 2021; 334: 129376. https://doi.org/10.1016/j.snb.2020.129376

Nakata, S.; Okunishi, H.; Nakashima, Y. Distinction of gases with a semiconductor sensor depending on the scanning profile of a cyclic temperature. Analyst. 2006; 131: 148-154. https://doi.org/10.1039/b509996j

Ionescu, R.; Llobet, E.; Brezmes, J.; Vilanova, X.; Correig, X. Dealing with humidity in the qualitative analysis of CO and NO2 using a WO3 sensor and dynamic signal processing. Sensors Actuators, B Chem. 2003; 95; 177-182. https://doi.org/10.1016/S0925-4005(03)00411-8

Vergara, A.; Llobet, E.; Brezmes, J.; Ivanov, P.; Cané, C.; Gràcia, I.; Vilanova, X.; Correig, X. Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies. Sensors Actuators, B Chem. 2007; 123: 1002-1016. https://doi.org/10.1016/j.snb.2006.11.010

Ding, H.; Ge, H.; Liu, J. High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sensors Actuators, B Chem. 2005; 107: 749-755. https://doi.org/10.1016/j.snb.2004.12.009

Meng, F.; He, L.; Ji, H.; Yuan, Z. Sawtooth wave temperature modulation measurement method for recognizing five kinds of VOCs based on ZnO gas sensor. Meas. J. Int. Meas. Confed. 2024; 228: 114342. https://doi.org/10.1016/j.measurement.2024.114342

Di Giuseppe, D.; Catini, A.; Comini, E.; Zappa, D.; Di Natale, C.; Martinelli, E. Optimizing MOX sensor array performances with a reconfigurable self-adaptive temperature modulation interface. Sensors Actuators, B Chem. 2021; 333: 129509. https://doi.org/10.1016/j.snb.2021.129509

Gosangi, R.; Gutierrez-Osuna, R. Active temperature modulation of metal-oxide sensors for quantitative analysis of gas mixtures. Sensors Actuators, B Chem. 2013; 185: 201-210. https://doi.org/10.1016/j.snb.2013.04.056

Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sensors Actuators, B Chem. 2017; 247: 903-915. https://doi.org/10.1016/j.snb.2017.03.107

Heilig, A.; Bârsan, N.; Weimar, U.; Schweizer-Berberich, M.; Gardner, J.W.; Göpel, W. Gas identification by modulating temperatures of SnO2-based thick film sensors. Sensors Actuators, B Chem. 1997; 43: 45-51. https://doi.org/10.1016/S0925-4005(97)00096-8

Huang, X.J.; Choi, Y.K.; Yun, K.S.; Yoon, E. Oscillating behaviour of hazardous gas on tin oxide gas sensor: Fourier and wavelet transform analysis. Sensors Actuators, B Chem. 2006; 115: 357-364. https://doi.org/10.1016/j.snb.2005.09.022

Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.B.; Xing, C. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sensors Actuators B Chem. 2022, 350, 130867, https://doi.org/10.1016/j.snb.2021.130867.

Ji, H.; Liu, Y.; Zhu, H.; Zhang, H.; Yuan, Z.; Meng, F. Interference suppression strategies for trace minor component of semiconductor gas sensor based on temperature modulation mode. Sensors Actuators B Chem. 2023; 388: 133874. https://doi.org/10.1016/j.snb.2023.133874

Si, R.; Li, Y.; Tian, J.; Tan, C.; Chen, S.; Lei, M.; Guo, X.; Zhang, S. The stability of SnO2 and In2O3 gas sensors to water under temperature modulation mode. Sensors Actuators B Chem. 2023; 393: 134222. https://doi.org/10.1016/j.snb.2023.134222

Ji, H.; Zhu, H.; Wang, H.; Kong, L.; Cheng, Z.; Yuan, Z.; Meng, F. Gas detection strategy to suppress flow rate interference baesd on semiconductor sensor dynamic temperature modulation measurement. Sensors Actuators B Chem. 2023; 393: 134232. https://doi.org/10.1016/j.snb.2023.134232

Ji, H.; Zhu, H.; Zhang, R.; Gao, H.; Yuan, Z.; Meng, F. Suppress ambient temperature interference strategy based on SnO2 gas semiconductor sensor using dynamic temperature modulation mode and principal component analysis algorithm. Sensors Actuators B Chem. 2023; 395: 134543. https://doi.org/10.1016/j.snb.2023.134543

Ji, H.; Liu, Y.; Chen, G.; Kong, L.; Yuan, Z.; Meng, F. Pre-pulse-driven temperature modulation based on semiconductor gas sensor: A low-temperature strategy for gas detection. Sensors Actuators B Chem. 2024; 414: 135884. https://doi.org/10.1016/j.snb.2024.135884

Han, J.; Zhou, W.; Kong, D.; Gao, Y.; Gao, Y.; Wang, Y.; Lu, G. High-performance NO2 gas sensor enabled by Fe, N co-doped GQDs modification and pulse-driven temperature modulation. Sensors Actuators B Chem. 2024; 417: 136040. https://doi.org/10.1016/j.snb.2024.136040

Meng, F.; Li, G.; Ji, H.; Shen, Y.; Yuan, Z. Detection and identification of the gas mixtures of n-propyl alcohol and iso-propyl alcohol based on ZnO sensor under dynamic temperature modulation. Sensors Actuators B Chem. 2025; 422: 136583. https://doi.org/10.1016/j.snb.2024.136583

Wu, Y.; Huang, N.; Wang, J. Sensitive characteristics of ZnO nano gas sensor based on dynamic temperature modulation. Results Phys. 2020; 18: 103241. https://doi.org/10.1016/j.rinp.2020.103241

Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sensors Actuators, B Chem. 2017; 239: 390-396. https://doi.org/10.1016/j.snb.2016.08.002

Zhang, G.; Xie, C. A novel method in the gas identification by using WO3 gas sensor based on the temperature-programmed technique. Sensors Actuators, B Chem. 2015; 206: 220-229, https://doi.org/10.1016/j.snb.2014.09.063

Burgués, J.; Marco, S. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors. Anal. Chim. Acta 2018; 1019: 49-64. https://doi.org/10.1016/j.aca.2018.03.005

Nakata, S.; Takahara, N. Distinction of gaseous mixtures based on different cyclic temperature modulations. Sensors Actuators B Chem. 2022; 359; 131615. https://doi.org/10.1016/j.snb.2022.131615

Published
2025-07-19
How to Cite
Shaposhnik, A. V., Moskalev, P. V., Arefieva, O. A., Zviagin, A. A., Dyakonova, O. V., & Vasiliev, A. A. (2025). Selective determination of hydrogen by temperature modulation of a semiconductor sensor. Sorbtsionnye I Khromatograficheskie Protsessy, 25(3), 277-286. https://doi.org/10.17308/sorpchrom.2025.25/13028