Selective determination of hydrogen by temperature modulation of a semiconductor sensor
Abstract
There are practical tasks for the selective determination of hydrogen using compact, inexpensive sensor analyzers capable of operating offline for a long time in hard-to-reach places. However, there are currently no highly selective hydrogen sensors, and electronic nose devices that allow for qualitative and quantitative analysis using a set of several low-selective sensors consume a lot of electricity and require the use of a computer for data processing. The task of selective detection can be solved using a single sensor, which is low-selective in stationary mode, but with temperature modulation allows the gas analytes to show their individuality.
The transition from stationary mode to temperature modulation leads to the transformation of the sensory response from a scalar value to a vector one. Methods such as PCA (principal component analysis) or MLP (multilayer perceptron) are successfully used to process arrays of vector data, but their implementation requires fairly powerful microprocessors. Meanwhile, to create inexpensive compact gas analyzers, it is more rational to use less productive but more energy-efficient microcontrollers. Thus, the task arises of creating a simple algorithm for processing vector data that can be implemented in a standard microcontroller with limited computing capabilities.
In this paper, experimental data were obtained on the temperature modulation of a semiconductor gas sensor based on SnO2 with the addition of 3% palladium in the form of PdO in a hydrogen medium of various concentrations, as well as in other gaseous media. All the data was divided into two groups – a training sample was compiled from the first group, and the second group was reserved for tests. The concentrations of gases in the two samples did not match – this was done in order to complicate the task of selective analysis.
The algorithm we developed made it possible to solve the problem of selective gas detection without errors – all test experiments gave correct answers to the questions of qualitative analysis.
Downloads
References
Fetisov V.; Davardoost H.; Mogylevets V. Technological Aspects of Methane–Hydrogen Mixture Transportation through Operating Gas Pipelines Considering Industrial and Fire Safety. Fire 2023; 6(10): 410. https://doi.org/10.3390/fire6100409
Cai L.; Zhu S.; Wu G.; Jiao, F.; Li W.; Wang X.; An Y.; Hu Y.; Sun J.; Dong X. et al. Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostructure. Int. J. Hydrogen Energy 2020; 45: 31327-31340. https://doi.org/10.1016/j.ijhydene.2020.08.109
Mineo G.; Moulaee K.; Neri G.; Mirabella S.; Bruno E. H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods. Sensors Actuators B Chem. 2021; 348: 130704. https://doi.org/10.1016/j.snb.2021.130704
Zhou R.; Lin X.; Xue D.; Zong F.; Zhang J.; Duan X.; Li Q.; Wang T. Sensors and Actuators B : Chemical Enhanced H2 gas sensing properties by Pd-loaded urchin-like W 18 O 49 hierarchical nanostructures. Sensors Actuators B. Chem. 2018; 260: 900-907. https://doi.org/10.1016/j.snb.2018.01.104
Kim H.; Pak Y.; Jeong,Y.; Kim W.; Kim J.; Young G. Sensors and Actuators B : Chemical Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability. Sensors Actuators B. Chem. 2018; 262: 460-468. https://doi.org/10.1016/j.snb.2018.02.025
Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles. Int. J. Hydrogen Energy 2022; 47: 3157-3169. https://doi.org/10.1016/j.ijhydene.2021.10.201
Liewhiran, C.; Tamaekong, N.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Ultra-sensitive H2+ sensors based on flame-spray-made Pd-loaded SnO2+ sensing films. Sensors Actuators, B Chem. 2013; 176: 893-905. https://doi.org/10.1016/j.snb.2012.10.087
Qiu, T.; Zhou, S.; Ji, J.; Wu, G.; Yan, W.; Ling, M.; Liang, C. High performance H2 sensor based on rGO-wrapped SnO2–Pd porous hollow spheres. Ceram. Int. 2022; 48: 15056-15063. https://doi.org/10.1016/j.ceramint.2022.02.034
Zhang, S.; Yin, C.; Yang, L.; Zhang, Z.; Han, Z. Sensors and Actuators B : Chemical Investigation of the H 2 sensing properties of multilayer mesoporous pure and Pd-doped SnO 2 thin fi lm. Sensors Actuators B. Chem. 2019; 283: 399-406, https://doi.org/10.1016/j.snb.2018.12.051
Meng, X.; Bi, M.; Gao, W. Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sensors Actuators B Chem. 2022; 370; 132406. https://doi.org/10.1016/j.snb.2022.132406
Weh T., Fleischer M., Meixner H. Optimization of physical filtering for selective high temperature H 2 sensors. Sensors and Actuators B. 2000; 68: 146-150.
Fleischer, M., Seth, M., Kohl, C., Meixner, H.P. A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sensors and Actuators B. 1996; 36: 297-302.
Meng X., Zhang Q., Zhang S., He Z. The Enhanced H2 Selectivity of SnO2 Gas Sensors with the Deposited SiO2 Filters on Surface of the Sensors. Sensors. 2019;19: 2478.
Layer M. Hydrogen Sensing Performance of ZnO Schottky Diodes in Humid Ambient Conditions with PMMA. Sensors. 2020; 20: 835.
Yakovlev P.V., Shaposhnik A.V., Voishchev V.S., Kotov V.V., Ryabtsev S.V.. Determination of gases using polymercoated semiconductor sensors. J. Anal. Chem. 2002; 57(3): 276-279. https://doi.org/10.1023/A:1014412919822
Huo, L.; Yang, X.; Liu, Z.; Tian, X.; Qi, T.; Wang, X.; Yu, K.; Sun, J.; Fan, M. Sensors and Actuators B : Chemical Modulation of potential barrier heights in Co 3 O 4 / SnO2 heterojunctions for highly H2 -selective sensors. Sensors Actuators B. Chem. 2017; 244: 694-700. https://doi.org/10.1016/j.snb.2017.01.061
Shaposhnik, A. V.; Moskalev, P. V.; Arefieva, O.A.; Zvyagin, A.A.; Kul, O. V.; Vasiliev, A.A. Selective determination of hydrogen in a mixture with methane using a single metal oxide sensor. Int. J. Hydrogen Energy 2024; 82: 523-530. https://doi.org/10.1016/j.ijhydene.2024.07.379
Krivetskiy, V.; Efitorov, A.; Arkhipenko, A.; Vladimirova, S.; Rumyantseva, M.; Dolenko, S.; Gaskov, A. Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode. Sensors Actuators, B Chem. 2018; 254: 502-513. https://doi.org/10.1016/j.snb.2017.07.100
Shaposhnik, A.V.; Moskalev, P.V.; Zviagin, A.A.; Duykova, M.V.; Ryabtsev, S.V.; Ghareeb, D.A.A.; Vasiliev, A.A. Selective determination of hydrogen sulfide using SnO2–Ag sensor working in non-stationary temperature regime. Chemosensors 2021; 9: 203. https://doi.org/10.3390/chemosensors9080203
Shaposhnik, A.V.; Moskalev, P.V.; Chegereva, K.L.; Zviagin, A.A.; Vasiliev, A.A. Selective gas detection of H2 and CO by a single MOX-sensor. Sensors Actuators, B Chem. 2021; 334: 129376. https://doi.org/10.1016/j.snb.2020.129376
Nakata, S.; Okunishi, H.; Nakashima, Y. Distinction of gases with a semiconductor sensor depending on the scanning profile of a cyclic temperature. Analyst. 2006; 131: 148-154. https://doi.org/10.1039/b509996j
Ionescu, R.; Llobet, E.; Brezmes, J.; Vilanova, X.; Correig, X. Dealing with humidity in the qualitative analysis of CO and NO2 using a WO3 sensor and dynamic signal processing. Sensors Actuators, B Chem. 2003; 95; 177-182. https://doi.org/10.1016/S0925-4005(03)00411-8
Vergara, A.; Llobet, E.; Brezmes, J.; Ivanov, P.; Cané, C.; Gràcia, I.; Vilanova, X.; Correig, X. Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies. Sensors Actuators, B Chem. 2007; 123: 1002-1016. https://doi.org/10.1016/j.snb.2006.11.010
Ding, H.; Ge, H.; Liu, J. High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sensors Actuators, B Chem. 2005; 107: 749-755. https://doi.org/10.1016/j.snb.2004.12.009
Meng, F.; He, L.; Ji, H.; Yuan, Z. Sawtooth wave temperature modulation measurement method for recognizing five kinds of VOCs based on ZnO gas sensor. Meas. J. Int. Meas. Confed. 2024; 228: 114342. https://doi.org/10.1016/j.measurement.2024.114342
Di Giuseppe, D.; Catini, A.; Comini, E.; Zappa, D.; Di Natale, C.; Martinelli, E. Optimizing MOX sensor array performances with a reconfigurable self-adaptive temperature modulation interface. Sensors Actuators, B Chem. 2021; 333: 129509. https://doi.org/10.1016/j.snb.2021.129509
Gosangi, R.; Gutierrez-Osuna, R. Active temperature modulation of metal-oxide sensors for quantitative analysis of gas mixtures. Sensors Actuators, B Chem. 2013; 185: 201-210. https://doi.org/10.1016/j.snb.2013.04.056
Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sensors Actuators, B Chem. 2017; 247: 903-915. https://doi.org/10.1016/j.snb.2017.03.107
Heilig, A.; Bârsan, N.; Weimar, U.; Schweizer-Berberich, M.; Gardner, J.W.; Göpel, W. Gas identification by modulating temperatures of SnO2-based thick film sensors. Sensors Actuators, B Chem. 1997; 43: 45-51. https://doi.org/10.1016/S0925-4005(97)00096-8
Huang, X.J.; Choi, Y.K.; Yun, K.S.; Yoon, E. Oscillating behaviour of hazardous gas on tin oxide gas sensor: Fourier and wavelet transform analysis. Sensors Actuators, B Chem. 2006; 115: 357-364. https://doi.org/10.1016/j.snb.2005.09.022
Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.B.; Xing, C. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sensors Actuators B Chem. 2022, 350, 130867, https://doi.org/10.1016/j.snb.2021.130867.
Ji, H.; Liu, Y.; Zhu, H.; Zhang, H.; Yuan, Z.; Meng, F. Interference suppression strategies for trace minor component of semiconductor gas sensor based on temperature modulation mode. Sensors Actuators B Chem. 2023; 388: 133874. https://doi.org/10.1016/j.snb.2023.133874
Si, R.; Li, Y.; Tian, J.; Tan, C.; Chen, S.; Lei, M.; Guo, X.; Zhang, S. The stability of SnO2 and In2O3 gas sensors to water under temperature modulation mode. Sensors Actuators B Chem. 2023; 393: 134222. https://doi.org/10.1016/j.snb.2023.134222
Ji, H.; Zhu, H.; Wang, H.; Kong, L.; Cheng, Z.; Yuan, Z.; Meng, F. Gas detection strategy to suppress flow rate interference baesd on semiconductor sensor dynamic temperature modulation measurement. Sensors Actuators B Chem. 2023; 393: 134232. https://doi.org/10.1016/j.snb.2023.134232
Ji, H.; Zhu, H.; Zhang, R.; Gao, H.; Yuan, Z.; Meng, F. Suppress ambient temperature interference strategy based on SnO2 gas semiconductor sensor using dynamic temperature modulation mode and principal component analysis algorithm. Sensors Actuators B Chem. 2023; 395: 134543. https://doi.org/10.1016/j.snb.2023.134543
Ji, H.; Liu, Y.; Chen, G.; Kong, L.; Yuan, Z.; Meng, F. Pre-pulse-driven temperature modulation based on semiconductor gas sensor: A low-temperature strategy for gas detection. Sensors Actuators B Chem. 2024; 414: 135884. https://doi.org/10.1016/j.snb.2024.135884
Han, J.; Zhou, W.; Kong, D.; Gao, Y.; Gao, Y.; Wang, Y.; Lu, G. High-performance NO2 gas sensor enabled by Fe, N co-doped GQDs modification and pulse-driven temperature modulation. Sensors Actuators B Chem. 2024; 417: 136040. https://doi.org/10.1016/j.snb.2024.136040
Meng, F.; Li, G.; Ji, H.; Shen, Y.; Yuan, Z. Detection and identification of the gas mixtures of n-propyl alcohol and iso-propyl alcohol based on ZnO sensor under dynamic temperature modulation. Sensors Actuators B Chem. 2025; 422: 136583. https://doi.org/10.1016/j.snb.2024.136583
Wu, Y.; Huang, N.; Wang, J. Sensitive characteristics of ZnO nano gas sensor based on dynamic temperature modulation. Results Phys. 2020; 18: 103241. https://doi.org/10.1016/j.rinp.2020.103241
Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sensors Actuators, B Chem. 2017; 239: 390-396. https://doi.org/10.1016/j.snb.2016.08.002
Zhang, G.; Xie, C. A novel method in the gas identification by using WO3 gas sensor based on the temperature-programmed technique. Sensors Actuators, B Chem. 2015; 206: 220-229, https://doi.org/10.1016/j.snb.2014.09.063
Burgués, J.; Marco, S. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors. Anal. Chim. Acta 2018; 1019: 49-64. https://doi.org/10.1016/j.aca.2018.03.005
Nakata, S.; Takahara, N. Distinction of gaseous mixtures based on different cyclic temperature modulations. Sensors Actuators B Chem. 2022; 359; 131615. https://doi.org/10.1016/j.snb.2022.131615




