Contact-difference method for measuring electrical conductivity in determination of the transport characteristics of heterogeneous ion-exchange membranes of different service life in an industrial electrodialyzer

  • Olga A. Kozaderova Voronezh State University of Engineering Technologies, Voronezh
  • Lilia A. Sinyaeva Voronezh State University of Engineering Technologies, Voronezh
  • Yaroslava S. Khukharkina Voronezh State University of Engineering Technologies, Voronezh
Keywords: contact-difference method, heterogeneous ion-exchange membranes, transport and structural parameters

Abstract

. The main features, advantages and disadvantages of various methods for determining the electrical conductivity of ion-exchange membranes are considered. The transport and structural characteristics of heterogeneous cation- and anion-exchange membranes of Ralex CM-PES and Ralex AM-PES membranes of different terms of use in an industrial electrodialyzer have been evaluated based on measurements of their electrochemical impedance found by the contact-difference method developed and modified by Professor V.A. Shaposhnik. These membranes have been used for a long time in an industrial electrodialyzer in the mode of concentration/desalination of multicomponent salt solutions – waste products from the production of complex mineral fertilizers. It was found that with an increase in the period of use of ion exchange membranes in an electrodialysis machine, their electrical conductivity increases, and there is also an increase in the conductivity of the gel phase of the membrane from 0.39 to 0.56 Cm/m for cation exchange samples, and from 0.35 to 0.50 Cm/m for anion exchange samples respectively. At the same time, a decrease in the exchange capacity of the membranes and an increase in their moisture content suggests an increase in the contribution of the internal solution to the electrical conductivity of the composite membrane, which is confirmed by an estimation of the transport and structural parameters of the membranes obtained from the concentration dependences of their specific electrical conductivity in sodium chloride solutions within the framework of an expanded three-wire model. The patterns found are most significant for the RalexAM-PES anion exchange membrane with a five-year service life.

Downloads

Download data is not yet available.

Author Biographies

Olga A. Kozaderova, Voronezh State University of Engineering Technologies, Voronezh

Dr. Sci. (Chem.), Professor at the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, Russian Federation, e-mail: kozaderova-olga@mail.ru

Lilia A. Sinyaeva, Voronezh State University of Engineering Technologies, Voronezh

Cand. Sci (Chem.), Engineer at the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, Russian Federation, e-mail: liliya.sinyaevavsu@mail.ru

Yaroslava S. Khukharkina, Voronezh State University of Engineering Technologies, Voronezh

student at the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, Russian Federation, e-mail: yasslawa@mail.ru

References

Bilad M.R., Giwa A., Abdullah R., Bakar M.S.A., Technoeconomic and life cycle assessments of electrochemical membrane technology, Electrochemical Membrane Technology, 2024; 465-488. https://doi.org/10.1016/b978-0-443-14005-1.00011-8

Solonchenko K., Kirichenko A., Ki-richenko K. Stability of Ion Exchange Membranes in Electrodialysis, Membranes, 2023; 13(1): 52. https://doi.org/10.3390/membranes13010052

RALEX® ion exchange membranes https://www.mega.cz/membranes/#what-we-do

Pervov A.G., Chukhin V.A., Mikhail-in A.V. Raschet, proektirovanie i prime-nenie elektrodializnykh (elektromembrannykh) ustanovok po demineralizatsii vody Moskva, NIU MGSU, 2012, 88 p. (In Russ.)

Kozaderov O.A., Kozaderova O.A., Сhernova V.Yu. Sorption characteristics and electrical conductivity of anion-exchange membranes in lactic acid solu-tions, Sorbtsionnye i khromatograficheskie protsessy, 2023; 23(1): 18-27. https://doi.org/10.17308/sorpchrom.2023.23/10990 (In Russ.)

Kozaderova O.A., Shaposhnik V.A., Kinetic parameters of ion-exchange mem-brane in amino acid solutions, Russian Journal of Electrochemistry, 2004; 40(7): 698-703. https://doi.org/10.1023/B:RUEL.0000035251.04661.f7

Dammak L., Lteif R., Bulvestre G., Pourcelly G., Auclair B., Determination of the diffusion coefficients of ions in cation-exchange membranes, supposed to be ho-mogeneous, from the electrical membrane conductivity and the equilibrium quantity of absorbed electrolyte, Electrochimica Acta, 2001; 47: 451-457. http://dx.doi.org/10.1016/S0013-4686(01)00743-5

Kozaderova O.A., Kozaderov O.A., Niftaliev S., Electromass transfer in the system “cation exchange membrane-ammonium nitrate solution”, Membranes, 2022; 12(11): 1144. https://doi.org/10.3390/membranes12111144

Kislyi A.G., Kozmai A.E., Mareev S.A., Ponomar M.A., Anokhin D.V., Ivanov D.A., Umarov A.Z., Maryasevskaya A.V., Nikonenko V.V., Mathematical modeling of the transport characteristics of a pvdf-based cation-exchange membrane with low water content, Journal of Membrane Sci-ence, 2024; 707: 122931. https://doi.org/10.1016/j.memsci.2024.122931

Skolotneva E., Tsygurina K., Mareev S., Melnikova E., Pismenskaya N., Nikonenko V. High diffusion permeability of anion-exchange membranes for ammo-nium chloride: experiment and modeling, International Journal of Molecular Scienc-es, 2022; 23(10): 5872. https://doi.org/10.3390/ijms23105782

Gorobchenko A.D., Gil' V.V., Ni-konenko V.V., Sharafan M.V., Ma-tematicheskoe modelirovanie selektivnogo perenosa odnozaryadnykh ionov cherez mnogosloinuyu kompozitnuyu ionoobmen-nuyu membranu v protsesse elektrodializa, Membrany i membrannye tekhnologii, 2022; 12(6): 480-490. https://doi.org/10.31857/S2218117222060049 (In Russ.)

Vasil'eva V.I., Akberova E.M., Shaposhnik V.A., Malykhin M.D., Electro-chemical properties and structure of ion-exchange membranes upon thermochemi-cal treatment, Russian Journal of Electro-chemistry, 2014; (50)8: 789-797. https://doi.org/10.1134/S102319351408014X

Shaposhnik V.A. Activation ener-gies of ion exchange processes. Sorbtsionnye i khromatograficheskie protsessy. 2022; 22(5): 622-629. https://doi.org/10.17308/sorpchrom.2022.22/10683 (In Russ.)

Kononenko N.A., Demina O.A., Lo-za N.V., Falina I.V., Shkirskaya S.A., Membrannaya elektrokhimiya. Krasnodar, Kubanskii gosudarstvennyi universitet, 2015, 290 p. (In Russ.)

Vasil’eva V.I., Meshcheryakova E.E., Chernyshova O.I., Brovkina M.A., Falina I.V., Akberova E.M., Dobryden’ S.V., Transport and structural characteris-tics of heterogeneous ion-exchange mem-branes with varied dispersity of the ion ex-changer, Membranes and Membrane Tech-nologies, 2024; 6(2): 120-131. https://doi.org/10.1134/S2517751624020082

Meshcheryakova E.E., Brovkina M.A., Falina I.V., Vasil'eva V.I., Akberova E.M. The effect of the concentration of ion-exchange resin on the electrotransport properties of heterogeneous membranes, Sorbtsionnye i khromatograficheskie protsessy, 2022; 22(4): 523-533. https://doi.org/10.17308/sorpchrom.2022.22/10607 (In Russ.)

Demina O.A., Shkirskaya S.A., Ko-nonenko N.A., Nazyrova E.V., Assessing the selectivity of composite ion-exchange membranes within the framework of the extended three-wire model of conduction, Russian Journal of Electrochemistry, 2016; 52(4): 291-298. https://doi.org/10.1134/S1023193516040030

Kononenko N.A., Demina O.A., Lo-za N.V., Dolgopolov S.V., Timofeev S.V., Teoreticheskoe i ehksperimental'noe issle-dovanie predel'nogo diffuzionnogo toka v sistemakh s modificirovannymi perftoriro-vannymi sul'fokationitovymi membranami, Russian Journal of Electrochemistry, 2021; 57(5): 283-300.: https://doi.org/10.31857/S0424857021050066 (In Russ.)

Zabolockij V.I., Nikonenko V.V. Perenos ionov v membranakh. Moskva, Nauka,1996, 390 p.

Gnusin N.P., Dyomina O.A., Meshechkov A.I., Turjan I., Electrical con-ductance of ion-exchange membranes measured under alternating or direct cur-rent, Soviet Electrochemistry, 1985; 21: 1521-1529. (In Russ.)

Berezina N.P. Ehlektrokhimiya membrannykh sistem. Krasnodar, Ku-banskij gosudarstvennyj universitet, 2009, 137 p.

Karpenko L.V., Demina O.A., Dvorkina G.A., Parshikov S.B., Larche C., Auclair B., Berezina N.P., Comparative study of methods used for the determina-tion of electroconductivity of ion-echange membranes, Russian Journal of Electro-chemistry, 2001; 37: 328-335. (In Russ.)

Shaposhnik V.A. Kinetika ehlek-trodializa. Voronezh, VGU, 1989, 176 p.

Lteif R., Dammak L., Larchet C., Auclair B., Conductivité électrique membranaire, European Polymer Journal, 1999; 35(7) : 1187-1195.

Pasechnaya E.L., Ponomar M.A., Klevtsova A.V., Korshunova A.V., Sarapu-lova V.V., Pismenskaya N.D. Characteris-tics of Aliphitic and Aromatic Ion-Exchange Membranes After Electrodialysis Tartrate Stabilization of Wine Materials, Membrany i membrannye tekhnologii, 2024; 14(4): 317-332. https://doi.org/10.31857/S2218117224040079

Mel'nikov S.S., Ehlektroprovodnost' ionoobmennykh membran v rastvorakh karbonovykh kislot, Politematicheskij setevoj ehlektronnyj nauchnyj zhurnal Ku-banskogo gosudarstvennogo agrarnogo universiteta, 2016; 124(10): 549-562. (In Russ.)

Pechenkina E.S., Bobrov M.N., Studying the influence of transition metal cations on the electrical conductivity of cation exchange membranes, Himiya i khimicheskaya tekhnologiya. Khimiya i tekhnologiya neorganicheskikh veshchestv Izvestiya SPBGTI(TU), 2024; 69(95): 19-24. https://doi.org/10.36807/1998-9849-2024-69-95-19-24

Sheldeshov N., Zabolotskii V., Loza S. Electroconductivity of Profiled Ion-exchange Membranes, Membrany i mem-brannye tekhnologii, 2014; 4(4): 261-266. https://doi.org/10.1134/S2218117214040087

Isaev N.I., Shaposhnik V.A. K metodike opredeleniya ehlektroprovodnosti ionitovykh membran, Zavodskaya labora-toriya, 1965; 31(10): 1213-1215. (In Russ.)

Shaposhnik V.A., Emel'yanov D.E., Drobysheva I.V., Kontaktno-raznostnyj metod izmereniya ehlektroprovodnosti membran, Kolloidnyj zhurnal, 1984; 46(4): 820-822. (In Russ.)

Shaposhnik V.A., Anisimova N.O., Korovkina A.S. Electrical conductivity of multilayer monopolar ion-exchange mem-branes, Sorbtsionnye i khromatografiches-kie protsessy, 2018; 18(3): 346-351. (In Russ.)

Badessa T.S., Shaposhnik V.A. Electrical conductance studies on ion ex-change membrane using contact-difference method, Electrochimica Acta, 2017; 231: 453-459. http://dx.doi.org/10.1016/j.electacta.2017.02.108.

Badessa T.S., Shaposhnik V.A. The dependence of electrical conductivity of ion-exchange membranes on the charge of counter ions, Condensed Matter and Inter-phases, 2014; 16(2): 129-133.

Niftaliev S.I., Kozaderova O.A., Kim K.B., Matchina K.S. Izuchenie proces-sa perenosa toka v sisteme geterogennaya ionoobmennaya membrana-rastvor nitrata, Kondensirovannye sredy i mezhfaznye gra-nicy, 2016; 18(2): 232-240.

Filippov A.N., Akberova E.M., Va-sil’eva V.I. Study of the thermochemical effect on the transport and structural char-acteristics of heterogeneous ion-exchange membranes by combining the cell model and the fine-porous membrane model, Pol-ymers, 2023; 15(16): 3390. http://dx.doi.org/10.3390/polym15163390

Vasil'eva V.I., Akberova E.M., Ko-stylev D.V., Tzkhai A.A. Diagnostics of the structural and transport properties of an an-ion-exchange membrane ma-40 after use in electrodialysis of mineralized natural wa-ters, Membranes and Membrane Technolo-gies, 2019; 1(3): 153-167. http://dx.doi.org/10.1134/S2517751619030077

Yacev A.M., Akberova E.M., Goleva E.A., Vasil'eva V.I., Malykhin M.D. Diagnostika izmenenij mikrostruktury poverkhnosti i ob"ema sul'fokationoobmennoj membrany MK-40 pri ehlektrodialize sil'nomineraliziro-vannykh prirodnykh vod, Sorbtsionnye i khromatograficheskie protsessy, 2017; 17(2): 313-322. (In Russ.)

Kharina A., Eliseeva T. Tyrosine amino acid as a foulant for the heterogene-ous anion exchange membrane, Mem-branes, 2023; 13(10): 844. http://dx.doi.org/10.3390/membranes13100844

Kozaderova O.A. Chromium-modified heterogeneous bipolar membrane: structure, characteristics, and practical ap-plication in electrodialysis, Membranes, 2023; 13(2): 172. http://dx.doi.org/10.3390/membranes13020172

Niftaliyev S.I., Kouznetsova I.V., Peregoudov Yu.S., Okshin V.V., Melnik A.V. Prospects for utilization of sewage from the "FERTILIZERS" Open joint-stock company, Ehkologiya i promyshlennost' Rossii, 2012; 5: 36-39.

Kozaderova O.A., Kim K.B., Nif-taliev S.I. Сhanges of physicochemical and transport characteristics of ion exchange membranes in the process of operation un-der demineralization of wastewater water production of nitrogen-containing mineral fertilizers, Sorbtsionnye i khromatografich-eskie protsessy, 2018; 18(6): 873-883. (In Russ.)

Demina, O.A.; Kononenko, N.A.; Falina, I.V. New approach to the character-ization of ion-exchange membranes using a set of model parameters, Pet. Chem, 2014; 54: 515-525.

Vasil'eva V.I., Akberova E.M., Goleva E.A., Jacev A.M., Chaj A.A. Iz-menenie mikrostruktury i ekspluatacionnyh harakteristik sul'fokationoobmennoj mem-brany MK-40 pri elektrodialize prirodnyh vod, Poverhnost'. Rentgenovskie, sinhro-tronnye i nejtronnye issledovanija, 2017; 4: 49-56. http://dx.doi.org/10.7868/S0207352817040199 (In Russ.)

Vasil'eva V.I., Akberova E.M., Kostylev D.V., Tzkhai A.A. Diagnostics of the structural and transport properties of an an-ion-exchange membrane MA-40 after use in electrodialysis of mineralized natural waters, Membranes and Membrane Tech-nologies, 2019; 1(3): 153-167. http://dx.doi.org/10.1134/S2517751619030077

Garcia-Vasquez W., Ghalloussi R., Dammak L., Larchet C., Nikonenko V., Grande D. Structure and properties of het-erogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite, Journal of Mem-brane Science, 2014, 452: 104–116. http://dx.doi.org/10.1016/j.memsci.2013.10.035

Published
2025-07-30
How to Cite
Kozaderova, O. A., Sinyaeva, L. A., & Khukharkina, Y. S. (2025). Contact-difference method for measuring electrical conductivity in determination of the transport characteristics of heterogeneous ion-exchange membranes of different service life in an industrial electrodialyzer. Sorbtsionnye I Khromatograficheskie Protsessy, 25(3), 316-327. https://doi.org/10.17308/sorpchrom.2025.25/13043