Diffusion and chemical reaction of copper deposition in an ion-exchange matrix
Abstract
The process of chemical deposition of copper into a granular macroporous sulfocation exchanger with different reducing agents (sodium dithionite, sodium borohydride) in modes of single and multiple cycles of saturation and reduction (1-10) has been investigated. The kinetics of the deposition process is satisfactorily described by the model of internal diffusion accompanied by chemical reaction. The kinetic complex , including the coefficients of internal diffusion and the distribution of the reducing ion between phases, obtained from experimental data, has an order of magnitude lower values than for the sorption of the copper counterion.
The slow motion of the boundary of the final product formation detected on the grain sections in comparison with the intermediate stages testifies to the limiting stage of the internal diffusion of the reducing agent ions. From the comparison of two reducing agents taken in equal mass fractions, it follows that sodium dithionite reduces copper ions to metal particles through the stages of slow formation of intermediate compounds, and sodium borohydride more rapidly precipitates copper particles, most likely due to the participation in the overall process of hydrogen released in the chemical reaction.
It was found that from cycle to cycle deposition occurs at the same rate, pre-deposited copper does not prevent further accumulation of metal, which is possible due to repeated cycles of deposition in the matrix with newly released after the reduction of metal ionogenic centers and their conversion to the original hydrogen ionic form.
Downloads
References
Nanocomposites: New trends and developments, Ed. Farzad E. 2nd ed. ITAvE, 2016, 514 p. https://doi.org/10.5772/3389
Sergeyeva O.V., Rakhmanov S.K. Vvedenie v nanohimiju : posobie dlja studentov him. fak. Minsk, BSU, 2009, 176 p. (In Russ.)
Mikhailov M.D. Fiziko-himicheskie osnovy poluchenija nanochastic i nanomaterialov. Himicheskie metody poluchenija. SPb, Polytechnic University, 2012, 259 p. (In Russ.)
Petrii O.A., Electrosynthesis of nanostructures and nanomaterials, Russ. Chem. Rev., 2015; 84(2): 159-193. https://doi.org/10.1070/RCR4438 (In Russ.)
Kravchenko T.A., Kalinichev A.I., Polyansky L.N., Konev D.V. Nanocomposites metal-ion-exchanger. Moscow, Nauka, 2009, 392 p. (In Russ.)
Kravchenko T. A., Zolotukhina E. V. Chaika M. Yu., Yaroslavtsev A. B. Electrochemistry of nanocomposites metal-ion exchanger. Moscow, Nauka, 2013, 365 p. (In Russ.)
Kravchenko T.A., Krysanov V.A., Krysanova T.A. Fizikohimija poverhnostnyh javlenij : uchebnoe posobie. Voronezh, Publishing House VSU, 2020, 115 p. (In Russ.)
Ionic Polymer Metal Composites (IPMCs). Smart Multi-Functional Materials and Artificial Muscles, Ed. Shahinpoor M. UK, Royal Society of Chemistry, 2016, vol. 1, p. 429.
Domènech B., Bastos-Arrieta J., Alonso A., Macanás J., Muñoz M., Muraviev D.N. Bifunctional Polymer-Metal Nanocomposite Ion Exchange Materials. In: Ion Exchange Technologies, Ed. Kilislioğlu Y., 2012, Chapter 3, p. 35-72. http://dx.doi.org/10.5772/51579
Rollins H.W., Feng L., Jermaine J., Jing-Ji M., Jin-Tao L., Ming-Hu T., Darryl D.D., Ya-Ping S., Nanoscale Cavities for Nanoparticles in Perfluorinated Ionomer Membranes, Langmuir, 2000; 16: 8031-8036. https://doi.org/10.1021/LA991593Y
Novikova S.A., Yaroslavtsev A.B., Sintez i transportnye svojstva membrannyh materialov s metallicheskimi chasticami medi i serebra, Sorbcionnye i hromatograficheskie processy, 2008; 8(6): 887-892. (In Russ.)
Yaroslavtsev A.B., Correlation between the Properties of Hybrid Ion-Exchange Membranes and the Nature and Dimensions of Dopant Particles, Nanotechnologies in Russia, 2012; 7(9-10): 437-451. https://doi.org/10.1134/S1995078012050175
Revina А., Busev S., Kalinitchev A., Kuznetsov M., Ponomarev A, Lebedeva M., Nanoparticles of Palladium, Platinum and Silver: Incoporation into Perfluoro-Sulfonated Membrane MF-4SK and Ionic Nafion, Advances in Nanoparticles, 2013; 2: 280-286. http://dx.doi.org/10.4236/anp.2013.23038
Chernyshova K.F., Revina A.A., Rol' pervichnyh aktov vosstanovlenija ionov, kislorodnyh jeffektov pri ispol'zovanii raznyh metodov formirovanija nanochastic zolota, vkljuchaja – «samoorganizaciju», Fizikohimija poverhnosti i zashhita materialov, 2023; 59(5): 539-545. https://doi.org/10.31857/S0044185623700675 (In Russ.)
Kuzmin A.V., Shainyan B.A., Mechanisms of catalytic electrochemical reactions of oxygen reduction (ORR) and carbon dioxide reduction (CO2RR), Russ. Chem. Rev., 2023; 92 (6): 1-32. https://doi.org/10.59761/RCR5085
Antoine O., Durand R., RRDE study of oxygen reduction on Pt nanoparticles inside Nafion: H2O2 production in PEMFC cathode conditions, J. Appl. Electrochem., 2000; 30: 839-844. https://doi.org/10.1023/A:1003999818560
Antoine O., Bultel Y., Durand R., Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion, J. Electroanal. Chem., 2001; 499: 85-94. https://doi.org /10.1016/S0022-0728(00)00492-7
Selvaraju T., Ramaraj R., Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction, Pramana – J. Phys., 2005; 65(4): 713-722. https://doi.org/10.1007/BF03010459
Kurysz Ya.I., Dodon O.S., Ustavytska O.O., Koshechko V.G., and Pokhodenko V.D., Electrocatalytic Properties of Nanocomposites Based on Conducting Polymers and Titanium Dioxide in Oxygen Reduction Process, Russian Journal of Electrochemistry, 2012; 48(11): 1058-1064. https://doi.org/10.1134/S1023193512110092
Yashtulov N.A., Lebedeva M.V., Flid V.R., Revina A.A., Catalytic activity of polymer-palladium metal nanocomposites in oxygen reduction and hydrogen oxidation reactions, Kinetics and Catalysis, 2013; 54(3): 322-325. https://doi.org/10.7868/S0453881113030179
Wain A.J. Imaging size effects on the electrocatalytic activity of gold nanoparticles using scanning electrochemical microscopy, Electrochim. Acta, 2013; 92: 383-391. https://doi.org/10.1016/j.electacta.2013.01.074
Liu K., Song Y., Chen S., Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles, International journal of hydrogen energy, 2016; 41(3): 1559-1567. https://doi.org/10.1016/
J.IJHYDENE.2015.10.059
Ni Y., Chen Z., Kong F., Qiao Y., Kong A., Shan Y., Pony-size Cu nanoparticles confined in N-doped mesoporous carbon by chemical vapor deposition for efficient oxygen electroreduction, Electrochimica Acta, 2018; 272: 233-241. https://doi.org/10.1016/j.electacta.2018.04.002
Volkov V.V., Kravchenko T.A, Roldughin V.I., Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russian Chemical Reviews, 2013; 82(5): 465-482. https://doi.org/10.1070/RC2013v082n05ABEH004325
Kravchenko T.A., Khorolskaya S.V., Polyanskiy L.N., Kipriyanova E.S. Investigation of the mass transfer process in metal-ion exchanger nanocomposites. In: Nanocomposites: Synthesis, Characterization and Application, Ed. Wang X. New York, Nova Science Publishers, 2013, pp. 329-348.
Kravchenko T.A., Krysanov V.A., Golovin I.A., Nanosized Complex of Metal–Ion-Exchanger Composites in the Oxygen Electrochemical Reduction, Russian Journal of Electrochemistry, 2023; 59(3): 182-189. https://doi.org/10.1134/S1023193523030059
Kravchenko T.A., Fertikova T.E., Golovin I.A., Martynov A.E., Size and Content Effects of Copper Nanoparticles in the Ion-Exchange Matrix for Intense Steady-State Electroreduction of Oxygen Dissolved in Water, Russian Journal of Physical Chemistry A, 2023; 97(12): 2768-2776. https://doi.org/10.1134/S0036024423120154
Kravchenko T.A., Sakardina E.A., Kalinichev A.I., Zolotukhina E.V., Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices, Russian Journal of Physical Chemistry A, 2015; 89(9): 1648-1654. https://doi.org/10.1134/S0036024415080178
Nativ M., Goldstein S., Schmuckler G., Kinetics of ion-exchange processes accompanied by chemical reactions, J. Inorganic Nuclear Chem., 1975; 37(9): 1951-1956. https://doi.org/10.1016/0022-1902(75)80923-7
Schmuckler G., Kinetics of moving-boundary ion-exchange processes, React Polym Ion Exch Sorbents, 1984; 2(1-2): 103-110.
Helfferich F.G., Hwang Y-L. Ion exchange kinetics. In: Ion Exchangers, Ed. Dorfner K. Berlin and New York, Walter de Gruter, 1991, Chapter 6.2, p. 1276-1309. https://doi.org/10.1515/9783110862430.1277
Kravchenko T.A., Nikolaev N.I. Kinetics and dynamics of processes in redoxites. Moscow, Khimiya, 1982, 140 p. (In Russ.)
Kalinitchev A.I., New Model of Multicomponent Masstransfer Kinetics in Bifunctional Matrix of Nanocomposites and Results of Simulation, Prot. Met. Phys. Chem. Surf., 2013; 49(6): 627-638. https://doi.org/10.1134/S2070205113060051
Smoly ionoobmennye. Kationity. Tehnicheskie uslovija: GOST 0298-2022. Moscow, FGBU «RST», 2022, 16 p. (In Russ.)
Ivanova A.А, Emel’yanov A.I., Korzhova S.A., Pozdnyakov A.S., Study of metal-polymer copper nanocomposites using the method of UV spectroscopy, Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology, 2021; 11(1): 165-170. https://doi.org/10.21285/2227-2925-2021-11-1-165-170 (In Russ.).




