Study of the kinetics of adsorption of cobalt(II) and nickel(II) ions by natural sorbents
Abstract
This paper analyzes the features of the absorption of cobalt (II) and nickel (II) ions by natural zeolites. The research is aimed at studying the kinetics and efficiency of adsorption of these ions. Kinetic curves of adsorption of the studied ions in the temperature range of 298-318 K. are obtained. The time of onset of adsorption equilibrium was 120 minutes. The adsorption of nickel(II) ions at T =298 K was 6.1 mg·g-1, and for cobalt – 5.6 mg·g-1 (T=298 K). The better adsorption capacity of nickel can be explained by the smaller size of the exchange ion radius (0.069 nm). For cobalt, this indicator is 0.074 nm. In the framework of the Boyd and Morris-Weber diffusion models, a quantitative approach was used to initially distinguish between the external and internal diffusion limitation of adsorption. It is shown that ion diffusion through the solution film contributes to the overall rate of the process. The values of the external diffusion rate constant are determined. The maximum value of the external diffusion rate constant of 0.019 min-1 for cobalt(II) ions and 0.015 min-1 for nickel(II) ions is reached at a temperature of 318 K, with increasing temperature, diffusion in the solution film increases. The contribution of the chemical stage to the kinetics of the heterogeneous adsorption process was characterized in the framework of kinetic models by Lagergren, Ho and McKay and Yelovich. The most applicable model for describing the processes under study is the pseudo-second-order model. This model assumes that the rate of the adsorption process is limited by a chemical reaction. In the case of the zeolites under consideration (geylandite-Сa), the process is accompanied by ion exchange between the adsorbed ions and the exchangeable cations of the natural mineral.
Downloads
References
Wu X., Cobbina S.J., Mao G., Xu H., Zhang Z., L. Yang L. Env. Sci Pollut Res Int. 2016; 23(9): 8244-8259. https://doi.org/10.1007/s11356-016-6333-x
Vengris, R. Binkiene, A. Sveikauskaite, T. Vengris, R. Binkiene, A. Sveikauskaite. Appl. Clay Sci. 2001; 18(3-4): 183-190. https://doi.org/10.1016/S0169-1317(00)00036-3
Prabhu P.P., Prabhu B. MATEC Web Conf. / ed. Raghuvir P.B., Mathew T.M. 2018; 144: 02021.
Sandoval O.G.M., Trujillo G.C.D., Oroz-co A.E.L. Water Resour. Ind. 2018; 20: 15-22. https://doi.org/10.1016/j.wri.2018.07.002
Merrikhpour H., Jalali M. Сlean tech-nologies and environmental policy. 2013; 15(2): 303-316. https://doi.org/10.1007/s10098-012-0522-1.
Cabrera C., Gabaldon C., Marzal P. Journal of chemical technology and biotech-nology. 2005; 80(4): 477–481. https://doi.org/10.1002/jctb.1189
Jimenez R.S., Dal Bosco S.M., Carvalho W.A. Quimica nova. 2004; 5: 734–738. https://doi.org/10.1590/S0100-40422004000500011
Wang Xue-Song, Huang Juan, Hu, Huai-Qiong, Journal of hazardous materials. 2007; 142(1-2): 468-476. https://doi.org/10.1016/j.jhazmat.2006.08.047
Rajic N., Stojakovic D., Jovanovic M. Applied surface science. 2010; 257: 1524–1532. https://doi.org/10.1016/j.apsusc.2010.08.090
Breck D.W. Zeolite molecular sieves: structure, chemistry, and use. New York: Wiley-Interscience, 1974. 771 p.
Tsitsishvili G.V., Аndronikoshvili T.G., Kirov G.N., Filizova L.D. Prirodnye tseolity. M.: Nauka. 1988. 128 p. (In Russ.)
Belova T.P. Heliyon. 2019; 5(9): e02320. https://doi.org/10.1016/j.heliyon.2019.e02320
Marczenko, Z., Spectrophotometric De-termination of the Elements, Ellis Horwood Series in Analytical Chemistry, New York: Wiley, 1976. 643 p.
Lyr’e YU.YU., Rybnikova A.I. Chemi-cal analysis of industrial wastewater. M.: Chemistry. 1974. 336 p. (In Russ.)
Wang Xue-Song, Huang Juan, Hu, Huai-Qiong Journal of hazardous materials. 2007; 142(1-2): 468–476. https://doi.org/10.1016/j.jhazmat.2006.08.047
Jimenez R.S., Dal Bosco S.M., Car-valho W.A. Quimica nova. 2004; 5: 734–738 https://doi.org/10.1590/S0100-40422004000500011.
Ho Y.S. Scientometrics. 2004; 59: 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
Douven S., Paez C.A., Gommes C.J. Journal of colloid and interface science. 2015; 448: 437-450. https://doi.org/10.1016/j.jcis.2015.02.053
Tsivadze A.Yu., RusanovA.I., Fomkin A.A., et al. Fizicheskaya khimiya ad-sorbtsionnykh yavlenii (Physical Chemistry of Adsorption Phenomena), M.: Granitsa, 2011. 304 p. (In Russ.)
H'yui Dzh. Neorganicheskaya сhimiya. Stroenie veshchestva i reakcionnaya sposob-nost' / Dzh. H'yui. M. : Сhimiya, 1987. 696 p. (In Russ.)
Sparks D.L. Kinetics of Soil Chemical Processes. Sparks. New York: Academic Press, 1989. 210 p.
Douven S., Paez C.A, Gommes C.J. J. of colloid and interface science. 2015; 448: 437-450. https://doi.org/10.1016/j.jcis.2015.02.053
Javadian H. Journal of industrial and engineering chemistry. 2014; 20(6): 4233-4241. https://doi.org/10.1016/j.jiec.2014.01.026
Filatova E.G., Pozhidaev Y.N., Poma-zkina O.I. Protection of Metals and Physical Chemistry of Surfaces. 2016; 52(3): 438-442. (In Russ.)
Filatova E.G., Matienko O.I. Sorbtsionnye i Khromatograficheskie Protsessy, 2023; 23(1): 116-128. https://doi.org/10.17308/sorpchrom.2023.23/10999 (In Russ.)
Chelishhev H.F., Volodin V.F., Kryu-kov V.L. Ionoobmennye svojstva prirodnykh vysokokremnistykh tseolitov. M.: Nauka. 1988. 128 p. (In Rus.)




