Comparative study of adsorption of Cu(II) ions from aqueous solutions by industrial ion exchangers and ion exchange systems based on them
Abstract
The sorption of Cu(II) ions from aqueous solutions on the sulfocation exchanger KU-2-8, the anion exchanger AN-31 and the ion exchange system with long-range interaction based on the industrial ion exchangers KU-2-8 and AN-31 was studied. A study was conducted to ascertain the influence of various parameters on the process. It was demonstrated that under optimal conditions of an adsorption duration of 12 hours, a pH value of 4.6 and a temperature of 293K, the maximum adsorption of copper ions by the cation exchanger KU-2-8 (H+ form) is 112.4 mg/g, by the anion exchanger AN-31 (Cl- form) 114.2 mg/g, and for the ion exchange system composed of the sulfonic cation exchanger KU-2-8 and the anion exchanger AN-31 296.7 mg/g. It is evident that the static exchange capacity of the ion exchange system at this temperature is higher than the sum of the individual capacities of the ion exchangers (226.6 mg/g). The results obtained demonstrate that the ion exchange system with long-range interaction absorbs Cu(II) ions more effectively than individual sorbents. In order to elucidate the activation mechanism, the conductivity of individual ion exchangers and the ion exchange system in aqueous solutions was measured by the conductometric method. Accordingly, the conductivity of AN-31 (OH- form) was 20.5 µs/cm, and KU-2-8 (H+ form) – 2.48 µs/cm, and the conductivity of the KU-2-8-AN-31 system was 27.9 µs/cm. The presence of H+ and OH- ions in the system, capable of forming water molecules, resulted in an increase in the ionization of sulfogroups in the KU-2-8 cation ion exchanger, thereby enhancing their capacity to sorb Cu(II) ions. In the ion exchange system KU-2-8-AN-31 (1:1), compared to other systems, a deeper cross-activation of the functional groups of polymers can occur due to their transition to a highly ionized state, leading to a significant increase in the sorption capacity of the studied system. The adsorption isotherms of Cu(II) ions by ion exchangers and ion exchange systems were analysed using various models. The findings indicated that the Langmuir model provides a superior fit to the experimental results. Moreover, kinetic studies demonstrated that the adsorption process of Cu(II) ions is more accurately described by the pseudo-second order kinetic model.
Downloads
References
Ab Hamid N.H., bin Mohd Tahir M.I.H., Chowdhury A., Nordin A.H., Alshaikh A.A., Suid M.A.; Nazaruddin N.‘I., Nozaizeli N.D., Sharma S., Rushdan A.I. Water. 2022; 14: 3086. https://doi.org/10.3390/w14193086.
Qingyan Bai, Chao Huang, Shujuan Ma, Bolin Gong, Junjie Ou. Sep. Purif. Technol. 2023; 315: 123666. https://doi.org/10.1016/j.seppur.2023.123666
Al-Saydeh S.A., El-Naas M.H., Zaidi S.J. Ind. Eng. Chem. 2017; 56: 35-44. https://doi.org/10.1016/j.jiec.2017.07.026
Wu L., Wan W., Shang Z., Gao X., Koba-yashi N., Luo G., Li Z., Sep. Purif. Technol. 2018; 197: 156-169. https://doi.org/10.1016/j.seppur.2018.01.007
Rafique M., Hajra S., Tahir M.B., Gillani S.S.A., Irshad M., Environ. Sci. Pollut. Res. 2022; 29: 16772-16781. https://doi.org/10.1007/s11356-022-18638-9
Khademian E., Salehi E., Sanaeepur H., Galiano F., Figoli A., Sci. Total Environ. 2020; 738: 139829. https://doi.org/10.1016/j.scitotenv.2020.139829
Rastogi S., Kandasubramanian B., Envi-ron. Sci. Pollut. Res. 2020; 27: 210-237. https://doi.org/10.1007/s11356-019-07280-7
Azimi A., Azari A., Rezakazemi M., An-sarpour M., ChemBioEng Rev. 2017; 4: 37-59. https://doi.org/10.1002/cben.201600010
Chinedu N, Chukwudum QC. Pollution Study. 2025; 6(1): 3106. https://doi.org/10.54517/ps3106
Khademian E., Salehi E., Sanaeepur H., Galiano F., Figoli A., Sci. Total Environ. 2021; 754: 142048. https://doi.org/10.1016/j.scitotenv.2020.142048
Bekchanov D., Mukhamediev M., Eshtursunov D., Lieberzeit P., Su X. Polymers for Advanced Technologies. 2024; 35(1): е6207. https://doi.org/10.1002/pat.6207
Mukhamediev M.G., Bekchanov D.Z., Juraev M.M., Lieberzeit P., Gafurova D.A. Russ J Appl Chem. 2021; 94: 1594-1601. https://doi.org/10.1134/S1070427221120041
Rustamov M.K., Gafurova D.A., Kari-mov M.M., N.M. Rustamova, Bekchonov D.Zh., Mukhamediev M.G. Russ J Gen Chem. 2014; 84: 2545-2551. https://doi.org/10.1134/S1070363214130106
Elfeghe Salem, Anwar Shams, James Lesley, Zhang Yahui The Canadian Journal of Chemical Engineering. 2022; 101(4): 2128-2138. https://doi.org/10.1002/cjce.24632
Оrlof-Naturalna, М., Вożęcka, А. Test. 2021; 2(2): 7-13. https://doi.org/10.29227/IM-2020-02-01
Вożęcka А., Оrlof-Naturalna М., Test. 2021; 2(2): 15-20. https://doi.org/10.29227/IM-2020-02-02
Sofinska-Chmiel W.; Kołodynska D.; Adamczuk, A.; Swietlicki, A.; Goliszek, M.; Smagieł, R. Materials. 2021; 14: 2915. https://doi.org/10.3390/ma14112915
Esraa Hashem Abd El-Halim, D.A. El-Gayar, H.A. Farag. Desalination and Water Treatment. 193; 2020: 133-141. https://doi.org/10.5004/dwt.2020.25689
Stroganova E.A., Anufrienko V.F., Larina T.V. Vasenin N. T., Lebedev Yu. A. & Parmon V. N. Russ. J. Phys. Chem. 2017; 91: 1548-1556. https://doi.org/10.1134/S0036024417080337
Modrogan C., Miron A. R., Orbulet O. D., Costache, C., Apostol, G. Environmental Engineering and Management Journal. 2015; 14(2): 449-454. https://doi.org/10.30638/EEMJ.2015.046
Muslim A. Journal of Chemical Engi-neering & Process Technology. 2012; 3(1): 1-6. https://doi.org/10.4172/2157-7048.1000121
Łukasz Stala, Justyna Ulatowska, Izabela Polowczyk. Journal of Hazardous Materials. 2022; 129047. https://doi.org/10.1016/j.jhazmat.2022.129047
Jumadilov, T.; Khimersen, K.; Haponiuk, J.; Totkhuskyzy, B. Polymers. 2024; 16: 220. https://doi.org/10.3390/polym16020220
Bekchanov D, Mukhamediev M, Lieberzeit P, Babojonova G, Botirov S. Polym Adv Technol. 2021; 32(10): 3995-4004. https://doi.org/10.1002/pat.5403
Dolgonosov A.M. Sorbtsionnye i khroma-tograficheskie protsessy. 2024. 24(5): 662-671. https://doi.org/10.17308/sorpchrom.2024.24/12506 (In Russ.)
Jumadilov T, Utesheva A, Grazulevicius J, Imangazy A. Polymers. 2023; 15(4): 816. https://doi.org/10.3390/polym15040816




