Use of fibrous and granular ion exchangers for obtaining micro- and nanodispersions of silica

Keywords: silica, liquid glass, dispersions, ion exchange, Fiban, sulfocationite, sulfocoal, softwood cellulose

Abstract

The article is devoted to obtaining micro- and nanodispersions of silica using fibrous and granular ionites. Experiments using cationite КУ-2-8, sulfocarbon, Fiban K-1 and wood (coniferous) sulfate cellulose previously modified by the authors by phosphorylation have been carried out. Systems based on liquid glass and distilled water containing 3, 6, 10, 20 and 30% (by weight) SiO2 were used for the experiments. Silica sols were obtained by the ion exchange method in static and dynamic modes with different ratio “liquid glass : ionite”. In order to study the behavior peculiarities of silica sols obtained in dynamic mode the kinematic viscosity changing was estimated within 2 months after their preparation. Additionally, experiments using cationite КУ-2-8 regenerated with 10 % H2SO4 followed by washing to neutral рН have been carried out. The silica sols stability was estimated visually and by turbidimetrical method. The particle size of obtained samples was determined by laser diffraction method, the morphology of xerogels SiO2 was studied by scanning electron microscopy. The results of IR-spectroscopy indicate the presence of bands generally characteristic of amorphous hydroxylated silica in obtained samples. It has been shown that more stable dispersions based on “liquid glass –water” systems containing 6% (by weight) SiO2 were formed. It has been found that the particle size of silica sols depended on the ionite type: fibrous cationites allowed obtaining colloidal systems with a smaller particle size and greater homogeneity compared to granular ones. It has been showed that modified cellulose was a promising material for obtaining nanodispersions of silica. The possibility of regenerated cationite using has been demonstrated. The latter is an advantage from an economic point of view. It has been shown that the viscosity of solutions when silica sols obtaining in dynamic mode could be managed by taking a certain volume of solution at the outlet of ion exchange column. The practical significance of obtained results lies in the expansion of range of polishing compositions based on SiO2 for their application in electronic industry for chemical-mechanical polishing of semiconductor wafers. It makes possible to abandon expensive imported materials in the future and to reduce the cost of final product manufacturing. 

Downloads

Download data is not yet available.

Author Biographies

Iryna M. Kimlenka, Belarusian State University, Minsk

PhD (Chemistry), Head of the Radiation Chemistry and Chemical–Pharmaceutical Technologies Department, Belarusian State University, Minsk, Republic of Belarus, e-mail: kimlenka@bsu.by

Tatsiana A. Savitskaya, Belarusian State University, Minsk

Dr. Sc. (Chemistry), Professor of the Physical Chemistry and Electrochemistry, Belarusian State University, Minsk, Republic of Belarus, e-mail: savitskayata@bsu.by

Yulia A. Stalbunova, Belarusian State University, Minsk

Master student, Faculty of Chemistry, Belarusian State University, Minsk, Republic of Belarus, e-mail: StolbunovaYA@bsu.by

Yanina A. Kasenok, Gomel State University named after F. Skoriny, Gomel

PhD (Technical Sciences), Associate Professor of the Department of Optics, Gomel State University, Gomel, Republic of Belarus, e-mail: ykosenok@gsu.by

Vladimir E. Gaishun, Gomel State University named after F. Skoriny, Gomel

PhD (Physics and Mathematics), Head of the Department of Optics, Gomel State University, Gomel, Republic of Belarus, e-mail: vgaishun@gsu.by

References

Potapov V.V., Gorev D.G. Industrial-naya economika, 2022; 1(1): 21-33. (In Russ.)

Nengyuan Zeng, Hongdong Zhao, Yuling Liu, Chenwei Wang, Chong Luo, Wan-tang Wang, Tenga Ma. Silicon, 2021; 14: 7473-7481.

Коsenok Ya.А., Gaishun V.Е., Тylen-kova О.I. Problemy physiki, matematiki i tekhniki, 2018; 37(4): 25-29. (In Russ.)

Shabanova N.А., Sarkisov P.D. Osno-vy zol-gel tekhnologii nanodispersnogo kremnezema. M., Аkademkniga, 2004, 208 p. (In Russ.)

Shilova О.А. Sol-gel technology of mi-cro- and nanocomposites. St. Petersburg, Lan, 2022, 304 p. (In Russ.)

Faustova Z.V., Slizhov Y.G. Inorg Ma-ter, 2017; 53: 287-291. https://doi.org/10.1134/S0020168517030050

Emrie D.B. Journal of Nanomaterials, 2024; 1. https://doi.org/10.1155/2024/6109770

Higuchi K., Liu Y., Unno M. Solids, 2025; 6(2): 20. https://doi.org/10.3390/solids6020020

Noppari P., Laukkanen O., Seppälä J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025; 710: 136290. https://doi.org/10.1016/j.colsurfa.2025.136290.

Khludneva A.S., Karpov S.I., Roessner F., Selemenev V.F. Sorbtsionnye I Khromato-graficheskie Protsessy. 2021; 21(5): 669-680. https://doi.org/10.17308/sorpchrom.2021.21/3773 (In Russ.)

Maiorov D.V. Sorbtsionnye I Khroma-tograficheskie Protsessy, 2023; 23(3): 413-425. https://doi.org/10.17308/sorpchrom.2023.23/11321 (In Russ.)

Marchenko L.N., Kosenok Y.А., Gaishun V.E., Bruttan Y.V., Kompiuternie is-sledovaniya i modelirovanie, 2024; 16(5): 1217-1253. (In Russ.)

Кudriavtsev P.G., Inzhenerny Vestnik Dona, 2018; 3. Mode of access: http://ivdon.ru/ru/magazine/archive/n3y2018/5099 (Date of access 04.05.2025). (In Russ.)

Akkaya B., Aslan J., Tasdemir R., Er-dem İ., Gönen M., Open Journal of Nano, 2024; 9(1): 1-10. https://doi.org/10.56171/ojn.1402531

Polikarpov А.P., Shunkevich А.А., Grachek V.I., Меdiak G.V. Ros. Khim. Zh. (Zh. Ros. Khim. obshestva im. D. I. Mende-leeva), 2015; 59(3): 102-111. (In Russ.)

Kimlenka I.М., Mokhamad R.R., Novitskaya М.B., Меlekhovets N.А., Кosenok Ya.А., Gaishun V.Е. Ispolzovanie modifitsiro-vannoi cellulose dla poluchenia kolloidnyx sys-tem na osnove dioksida kremniya, «Polimernie kompozity i tribologia-2022 (Polikormtrib-22)», Proceedings of the International Conference, June 28-30, 2022, Gomel, 2024. p. 134. (In Russ.)

Luneva N.К., Ezovitova Т.I., Shevchuk V.V., Smychnik А.D. Vesti Natsionalnoi Akademii nauk Belarusi Весці. Seriya khimich-eskix nauk, 2018; 54(2): 204 215. (In Russ.)

Grinshpan D., Savitskaya Т., Tsy-gankova N., Makarevich S., Kimlenka I., Ivashkevich O. Sustainable Chemistry and Pharmacy, 2017; 5: 1-13.

Elatontsev D.А., Мukhachev А.P. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2020; 63(11): 88-95. (In Russ.)

Frolov Y.G. Kurs kolloidnoi khimii: Poverkhnostnye yavlenia i dispersnye sistemy. Moscow, Khimiya, 1989, 464 p. (In Russ.)

Murashkevich А.N., Lavitskaya А.S., Barannikova Т.I., Zharsky I.М. Journal of Ap-plied Spectroscopy, 2008; 75(5): 724-728. (In Russ.)

Aleeva S.V., Koksharov S.А., Kornilova N.L., Gorelova А.Е., Zhurnal Fisicheskoi Khimii, 2020; 94(6): 938-942. (In Russ.)

Published
2025-11-08
How to Cite
Kimlenka, I. M., Savitskaya, T. A., Stalbunova, Y. A., Kasenok, Y. A., & Gaishun, V. E. (2025). Use of fibrous and granular ion exchangers for obtaining micro- and nanodispersions of silica. Sorbtsionnye I Khromatograficheskie Protsessy, 25(4), 576-585. https://doi.org/10.17308/sorpchrom.2025.25/13285