Synthesis of composite superabsorbents with the porous structure

  • Ivan A. Zhuravlev Voronezh State University, Voronezh
  • Maria S. Lavlinskaya Voronezh State University, Voronezh
  • Vladislav A. Kiselev Voronezh State University, Voronezh
  • Andrey V. Sorokin Voronezh State University, Voronezh
Keywords: composite superabsorbent, equilibrium swelling ratio, pore forming, surface morphology

Abstract

Superabsorbent polymers (SAPs) are a class of hydrogels capable of retaining water in amounts hundreds to thousands of times their own weight. Currently, the most widely used SAPs are synthetic, cross-linked polymers derived from acrylate monomers. However, the large-scale introduction of these materials into the industry imposes a significant anthropogenic burden on the environment, which is a key limiting factor for their broader application, particularly in agriculture.

A promising approach to addressing this issue is the development of composite superabsorbents – hydrogels that incorporate both acrylate and biodegradable components, most commonly polysaccharides. These materials exhibit greater environmental compatibility compared to fully synthetic counterparts. However, a major challenge in composite SAP chemistry is the inverse correlation between the swelling degree and the content of the polysaccharide component: the higher the proportion of biodegradable links – and thus the greater the ecofriendliness – the lower the water absorption capacity of the material.

This study explores one potential solution to this problem: enhancing the swelling capacity of a composite SAP based on sodium carboxymethyl cellulose by introducing a porous structure into the polymer network. This was achieved through the incorporation of a porogen, ammonium carbonate, directly into the reaction mixture during synthesis. The formation of the porous structure induced by the porogen was confirmed via scanning electron microscopy. The introduction of 5 wt.% of the pore-forming agent resulted in the formation of relatively uniformly distributed pores with diameters of 10–15 μm.

Equilibrium swelling measurements demonstrated that the introduction of porosity increased the swelling capacity by 26% compared to the non-porous control sample. Kinetic analysis of swelling behavior using mathematical models revealed that water absorption in the SAP occurs not only on the surface but also within the bulk of the polymer, involving anomalous non-Fickian diffusion. This behavior was observed for both tested samples, although hydration proceeded slightly faster in the porous SAP.

In summary, this study demonstrates that the use of porogens to create porous structures in composite superabsorbents is an effective strategy for enhancing their equilibrium swelling performance.

Downloads

Download data is not yet available.

Author Biographies

Ivan A. Zhuravlev, Voronezh State University, Voronezh

Student and Laboratory Assistant of Polymer Science and Colloid Chemistry Department of Voronezh State University; Laboratory Assistant of Biophysics and Biotechnology Department of Voronezh State University, Voronezh, Russian Federation; e-mail: ivan.geranos@yandex.ru

Maria S. Lavlinskaya, Voronezh State University, Voronezh

PhD (Chem), Senior Researcher of Biophysics and Biotechnology Department of Voronezh State University, Voronezh, Russian Federation; e-mail: maria.lavlinskaya@gmail.com

Vladislav A. Kiselev, Voronezh State University, Voronezh

Student of Polymer Science and Colloid Chemistry Department of Voronezh State University, Voronezh, Russian Federation; e-mail: Kiselev_vladislav04@mail.ru

Andrey V. Sorokin, Voronezh State University, Voronezh

PhD (Biol) Senior Researcher and Associate Professor of Polymer Science and Colloid Chemistry Department of Voronezh State University, Senior Researcher of Biophysics and Biotechnology Department of Voronezh State University, Voronezh, Russian Federation; e-mail: andrew.v.sorokin@gmail.com

References

Horie K., Máximo B., Fox R. B., He J., Hess M., Kahovec J., Kitayama T., Kubisa P., Maréchal E., Mormann W., Stepto R. F. T., Tabak D., Vohlídal J, Wilks E. S., Work W. J., Pure Appl. Chem., 2004; 76: 889-906. https://doi.org/10.1351/pac200476040889

Li S., Gang C., J. Clean. Prod., 2020; 251: 119669. https://doi.org/10.1016/j.jclepro.2019.119669

Ahmed E.M., J. Adv. Res., 2015; 6: 105-121. https://doi.org/10.1016/j.jare.2013.07.006

Schröfl C., Erk K.A., Siriwatwechakul W., Wyrzykowski M., Snoeck D., Cem. Concr. Res., 2022; 151: 106648. https://doi.org/10.1016/

j.cemconres.2021.106648

Superabsorbent Polymer Market Analysis: Industry Market Size, Plant Capacity, Produc-tion, Operating Efficiency, Demand & Supply, End-User Industries, Sales Channel, Regional Demand, Company Share, Foreign Trade, Manufacturing Process, Policy and Regulatory Landscape, 2015-2030. Available at: https://www.chemanalyst.com/industry-report/superabsorbent-polymer-market-727 (ac-cessed 29.09.2024);

Cao Q., Chen J., Wang M., Wang Z., Wang W., Shen Y., Xue Y., Li B., Ma Y., Yao Y., Wu H., Carbohyd. Polym., 2024; 331: 121910. https://doi.org/10.1016/j.carbpol.2024.121910

Fekete T., Borsa J., Takács E., Wojnarov-its L., Carbohyd. Polym., 2017; 166: 300-308. https://doi.org/10.1016/j.carbpol.2017.02.108

Nie H., Liu M., Zhan F., Guo M., Carbo-hyd. Polym. 2004; 58(2): 185-189. https://doi.org/10.1016/j.carbpol.2004.06.035

Sohail Y., Muhammad H., Munir H., Awais M., Song Y., Zheng Q., Shabbir H. G., Xiaowei L., Yang L., Jianfeng S., Chaohua G., Sustain. Mater. Technol., 2024; 40: e00947. https://doi.org/10.1016/j.susmat.2024.e00947

Beti V., Ana O., Blaž S., Blaž L., Uroš N., Int. J. Biol. Macromol., 2023; 252: 126433. https://doi.org/10.1016/j.ijbiomac.2023.126433

Siwen B., Zhuang Z., Zhenzhen Y., Zitong S., Jiahui C., Jintao H., Haoxiang J., Tianhao Q., Peng Y., Bin T., Carbohyd. Polym., 2023; 322: 121312. https://doi.org/10.1016/j.carbpol.2023.121312

Sorokin A., Sukhanov P., Popov V., Kannykin S., Lavlinskaya M., Cellulose, 2022; 29: 159-173. https://doi.org/10.1007/s10570-021-04326-3

Sorokin A., Lavlinskaya M., Polym. Bull., 2022; 79: 407-427. https://doi.org/10.1007/s00289-020-03521-9

Futterer T., Vermter H., Vissemborsky R., Shnee R., Kjummet D. Patent RF, No 2542279, 2010.

Ren Z., Kong D., Wang K., Zhang W., J. Mater. Chem. A, 2014; 2: 17952-17961. https://doi.org/10.1039/C4TA03024A

Ma L., Lv H., Yu H., Kong L., Zhang R., Guo X., Jin H., He G., Liu X., Chin. J. Chem. Eng., 2020; 33: 286-296. https://doi.org/10.1016/j.cjche.2020.07.032

Pardeshi S., Dhodapkar R., Kumar A., Compos. Interfaces, 2013; 21: 13-30. https://doi.org/10.1080/15685543.2013.830515

Locs J., Zalite V., Berzina-Cimdina L., Sokolova M.. J. Eur. Ceram. 2013; 33: 3437-3443. https://doi.org/10.1016/j.jeurceramsoc.2013.06.010

Nie L., Chen D., Fu J., Yang S., Hou R., Suo J., Biochem. Eng. J., 2015; 98: 29-37. https://doi.org/10.1016/j.bej.2015.02.026

Huang Y., Zeng M., Ren J., Wang J., Fan L., Xu Q. Colloids Surf. A Physicochem. Eng. Asp. 2012; 401: 97-106. https://doi.org/10.1016/j.colsurfa.2012.03.031

Thakur S., Pandey S., Arotiba O.A. Car-bohyd. Polym. 2016; 153: 34-46. https://doi.org/10.1016/j.carbpol.2016.06.104

Cheng S., Lei Z., Zhang L., Zhang Y., Liu Y., Wang B., Wang Y. Carbohyd. Polym. 2019; 225: 115214. https://doi.org/10.1016/j.carbpol.2019.115214

Sorokin A., Lavlinskaya M., Sorbtsionnye I Khromatograficheskie Protsessy, 2023; 23(5): 938-947. https://doi.org/10.17308/sorpchrom.2023.23/11728

Lagergreen S., Zur Theorie der sogenan-nten Adsorption gelöster Stoffe, Zeitschrift für Chemie und Industrie der Kolloide, 1907; 2: 15. https://doi.org/10.1007/bf01501332

Rudzinski W., Plazinski W., J. Phys. Chem. B. 2006; 110: 16514-16525. https://doi.org/10.1021/jp061779n

Vareda J. P. J. Mol. Liq. 2023; 76: 121416. https://doi.org/10.1016/j.molliq.2023.121416

Ho Y. S., McKay G., Process Biochemis-try, 1999; 34: 451-465. https://doi.org/10.1016/s0032-9592(98)00112-5

Plazinski W., Dziuba J., Rudzinski W. Adsorption. 2013; 19: 1055-1064. https://doi.org/10.1007/s10450-013-9529-0

Crank J. The mathematics of diffusion. London, Oxford University Press, 1975, 421 p.

Fang S., Wang G., Li P., Xing R., Liu S., Qin Y., Yu H., Chen X., Li K., Int. J. Biol. Macromol., 2018; 115: 754-761. https://doi.org/10.1016/j.ijbiomac.2018.04.0

Ariaeenejad S., Hosseini E., Motamedi E., Moosavi-Movahedi A.A., Salekdeh G.H. Chem. Eng. J. 2019; 375: 122022. https://doi.org/10.1016/j.cej.2019.122022

Bellamy L.J. The Infrared Spectra of Complex Molecules. 1st Edition, Springer Netherlands, Dordrecht, 1975. 190 р.

Zhou Y., Fu S., Zhang L., Zhan H., Car-bohyd. Polym., 2013; 97: 429-435. https://doi.org/10.1016/j.carbpol.2013.04.088

Sorokin A.V., Goncharova S.S., Lavlin-skaya M.S., Holyavka M.G., Faizullin D.A., Kondratyev M.S., Kannykin S.V., Zuev Y.F., Artyukhov V.G., Polymers, 2023; 15: 649. https://doi.org/10.3390/polym15030649

Sorokin A.V., Goncharova S.S., Lavlin-skaya M.S., Holyavka M.G., Faizullin D.A., Zuev Y.F., Kondratyev M.S., Artyukhov V.G., Int. J. Mol. Sci., 2023; 24: 11246. https://doi.org/10.3390/ijms241411246

Lavlinskaya, M.S., Sorokin, A.V., Prop-erties and Applications of Superabsorbent Pol-ymers, 2023; 24: 19-39. https://doi.org/10.1007/978-981-99-1102-8_2

Peppas, N., Eur. J. Pharm. Biopharm. 2000; 50: 27-46. https://doi.org/10.1016/s0939-6411(00)00090-4

Lavlinskaya M.S., Sorokin A.V. En-hancement of water uptake in composite super-absorbents based on carboxymethyl cellulose through porogen incorporation and lyophiliza-tion. Gels. 2024; 10(12): Article No 797. https://doi.org/10.3390/gels10120797

Published
2025-11-08
How to Cite
Zhuravlev, I. A., Lavlinskaya, M. S., Kiselev, V. A., & Sorokin, A. V. (2025). Synthesis of composite superabsorbents with the porous structure. Sorbtsionnye I Khromatograficheskie Protsessy, 25(4), 595-605. https://doi.org/10.17308/sorpchrom.2025.25/13287

Most read articles by the same author(s)