Patterns of polyol retention on zeolite 13X in polar organic solvents
Abstract
The paper considers the patterns of polyol retention on zeolite 13X under HPLC conditions. Its purpose is to systematise our knowledge about the effect of the polyol structure and separation conditions on the retention of sorbates. The study continues to investigate the electrostatically-induced sieving effect (EISE) that had been discovered for the separation of monohydric alcohols on zeolite 13X. The obtained results confirm the presence of EISE during the separation of polyols on zeolite 13X. The retention of polyols on the sorbent increased with a decrease of the water content in the mobile phase, which is consistent with the principles of normal-phase HPLC with water-compatible eluents, also known as hydrophilic interaction liquid chromatography (HILIC). However, the presence of a subnanoporous structure with Na+ cations, which causes the EISE, seriously modifies the retention mechanism. In the case of polyols, the role of the position of the hydroxyl group in the sorbate molecule and the contribution of steric factors to retention increase. The complex nature of the dependence of the polyol retention (logk’) on the hydrophobicity of sorbates (logP) is due to a combination of factors, including the pore geometry, the ability to undergo specific electrostatic interactions and form hydrogen bonds with groups on the surface of the zeolite. It was shown that there is a possibility to separate a mixture of lower polyols and water on zeolite 13X under optimal conditions, which is of interest for industrial preparative separation. Also, the obtained results make it possible to substantiate the possibility of using zeolite 13X to determine micro-quantities of water in polyols by HPLC.
Downloads
References
Nesterenko P.N., Palamareva M.D. Liquid Chromatography | Overview. Encyclopedia of Analytical Science (Third Edition). Academic Press. Oxford, 2019: 174-181. https://doi.org/10.1016/B978-0-12-409547-2.14214-3
Luzanova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. J. Anal. Chem, 2024; 79: 1353-1363. https://doi.org/10.1134/
S1061934824700722
Luzanova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. Sorbtsionnyye i khromatograficheskiye protsessy, 2023; 23: 691-704.https://doi.org/10.17308/sorpchrom.2023.23/11576
Wang Y., Zhao D. Crystal Growth and Design, 2017; 17: 2291-2308. https://doi.org/10.1021/acs.cgd.7b00287
Nesterenko P.N., Kazakova V.D. J. Chromatogr. Open, 2025; 7: 100207. https://doi.org/10.1016/j.jcoa.2025.100207
Puricelli S., Bruno G., Gatti C., Pont A.i, Mella M. Appl. Surf. Sci., 2024; 657: 159596. https://doi.org/10.1016/j.apsusc.2024.159596
Nesterenko P.N. Laboratoriya i proizvodstvo, 2022; 20 (1-2): 92-100. https://doi.org/10.32757/2619-0923.2021.1-2.20.92.100 (In Russ.)
Kazakova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. Micropor. Mesopor. Mater, 2025; 384 (113443). https://doi.org/10.1016/j.micromeso.2024.113443
Xiong P., He P., Qu Y., Wang L., Cao Y., Xu S., Chen J., Ammar M., Li H. Green Energy & Environment, 2021; 6: 102-113. https://doi.org/10.1016/j.gee.2019.12.006
Otis J., Hofmann J., Schmidt T., Buttersack C., Gläser R. Anal. Chim. Acta, 2023; 1267 :341323. https://doi.org/10.1016/j.aca.2023.341323
Mallon E.E., Babineau I.J., Kranz J.I., Guefrachi Y., Siepmann J.I., Bhan A., Tsapatsis M. J. Phys. Chem. B, 2011; 115 (39): 11431-11438. https://doi.org/10.1021/jp208143t
Xiong R., Sandler S.I., Vlachos D.G. Langmuir, 2012; 28 (9): 4491-4499. https://doi.org/10.1021/la204710j
Mallon E.E., Jeon M.Y., Navarro M., Bhan A., Tsapatsis M. Langmuir. 2013; 29 (22): 6546-6555. https://doi.org/10.1021/la4001494
Copeland J.R., Shi X.-R., Sholl D.S., Sievers C. Langmuir, 2013; 29: 581-593. https://doi.org/10.1021/la304074x
Luzanova V.D., Rozhmanova N.B., Volgin Y.V., Nesterenko P.N., Anal. Chim. Acta, 2023; 1239:340697. https://doi.org/10.1016/j.aca.2022.340697
Lao J., Fu Q., Avendano M., Bentley J.A., Chiang Y., Realff M.J., Nair S. ACS Sustainable Chemistry & Engineering, 2024; 12(38): 14173-14186.https://doi.org/10.1021/acssuschemeng.4c04121
Asnin L.D., Stepanova M.V. J. Chromatogr. A, 2024; 1733:465250. https://doi.org/10.1016/j.chroma.2024.465250
Fujisawa M., Kimura T., Takagi S. Fluid Phase Equil., 1997; 136 (1-2): 197-205. https://doi.org/10.1016/S0378-3812(97)00120-9
Hercigonja R., Rakic V. Science of Sintering, 2015; 47 (1): 83-88.
Snyder L.R., Poppe H. J. Chromatogr. A, 1980; 184: 363-413.
Wach W., Fornefett I., Buttersack C., Buchholz K. Anal. Methods, 2018; 10: 1817-1832. https://doi.org/10.1039/C7AY02634J
Dhale A.D., Myrant L.K., Chopade S.P., Jackson J.E., Miller D.J. Chem. Eng. Sci., 2004; 59(14): 2881-2890. https://doi.org/10.1016/j.ces.2004.02.018
Fortea J., García L., Ruiz J., Oliva M., Arauzo J. Processes, 2021; 9(8): 1438. https://doi.org/10.3390/PR9081438
Ai S., Qin Y., Hong Y., Liu L., Yu W. J. Catalysis, 2022; 413: 870-879. https://doi.org/10.1016/j.jcat.2022.07.034




