Patterns of polyol retention on zeolite 13X in polar organic solvents

Keywords: normal phase chromatography, microporous sorbents, zeolite 13X, dynamic adsorption of polyols, electro-statically induced sieving effect

Abstract

The paper considers the patterns of polyol retention on zeolite 13X under HPLC conditions. Its purpose is to systematise our knowledge about the effect of the polyol structure and separation conditions on the retention of sorbates. The study continues to investigate the electrostatically-induced sieving effect (EISE) that had been discovered for the separation of monohydric alcohols on zeolite 13X. The obtained results confirm the presence of EISE during the separation of polyols on zeolite 13X. The retention of polyols on the sorbent increased with a decrease of the water content in the mobile phase, which is consistent with the principles of normal-phase HPLC with water-compatible eluents, also known as hydrophilic interaction liquid chromatography (HILIC). However, the presence of a subnanoporous structure with Na+ cations, which causes the EISE, seriously modifies the retention mechanism. In the case of polyols, the role of the position of the hydroxyl group in the sorbate molecule and the contribution of steric factors to retention increase. The complex nature of the dependence of the polyol retention (logk’) on the hydrophobicity of sorbates (logP) is due to a combination of factors, including the pore geometry, the ability to undergo specific electrostatic interactions and form hydrogen bonds with groups on the surface of the zeolite. It was shown that there is a possibility to separate a mixture of lower polyols and water on zeolite 13X under optimal conditions, which is of interest for industrial preparative separation. Also, the obtained results make it possible to substantiate the possibility of using zeolite 13X to determine micro-quantities of water in polyols by HPLC.

Downloads

Download data is not yet available.

Author Biographies

Viktoriia D. Kazakova, Lomonosov Moscow State University, Moscow, Russian Federation

Junior researcher, Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, e-mail: viktorialuzanova.1998@gmail.com, Russian Federation

Pavel N. Nesterenko, Lomonosov Moscow State University, Moscow, Russian Federation

PhD, DSc, Professor, Leading Researcher, Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, e-mail: p.nesterenko@phys.chem.msu.ru, Russian Federation

References

Nesterenko P.N., Palamareva M.D. Liquid Chromatography | Overview. Encyclopedia of Analytical Science (Third Edition). Academic Press. Oxford, 2019: 174-181. https://doi.org/10.1016/B978-0-12-409547-2.14214-3

Luzanova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. J. Anal. Chem, 2024; 79: 1353-1363. https://doi.org/10.1134/

S1061934824700722

Luzanova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. Sorbtsionnyye i khromatograficheskiye protsessy, 2023; 23: 691-704.https://doi.org/10.17308/sorpchrom.2023.23/11576

Wang Y., Zhao D. Crystal Growth and Design, 2017; 17: 2291-2308. https://doi.org/10.1021/acs.cgd.7b00287

Nesterenko P.N., Kazakova V.D. J. Chromatogr. Open, 2025; 7: 100207. https://doi.org/10.1016/j.jcoa.2025.100207

Puricelli S., Bruno G., Gatti C., Pont A.i, Mella M. Appl. Surf. Sci., 2024; 657: 159596. https://doi.org/10.1016/j.apsusc.2024.159596

Nesterenko P.N. Laboratoriya i proizvodstvo, 2022; 20 (1-2): 92-100. https://doi.org/10.32757/2619-0923.2021.1-2.20.92.100 (In Russ.)

Kazakova V.D., Rozhmanova N.B., Lanin S.N., Nesterenko P.N. Micropor. Mesopor. Mater, 2025; 384 (113443). https://doi.org/10.1016/j.micromeso.2024.113443

Xiong P., He P., Qu Y., Wang L., Cao Y., Xu S., Chen J., Ammar M., Li H. Green Energy & Environment, 2021; 6: 102-113. https://doi.org/10.1016/j.gee.2019.12.006

Otis J., Hofmann J., Schmidt T., Buttersack C., Gläser R. Anal. Chim. Acta, 2023; 1267 :341323. https://doi.org/10.1016/j.aca.2023.341323

Mallon E.E., Babineau I.J., Kranz J.I., Guefrachi Y., Siepmann J.I., Bhan A., Tsapatsis M. J. Phys. Chem. B, 2011; 115 (39): 11431-11438. https://doi.org/10.1021/jp208143t

Xiong R., Sandler S.I., Vlachos D.G. Langmuir, 2012; 28 (9): 4491-4499. https://doi.org/10.1021/la204710j

Mallon E.E., Jeon M.Y., Navarro M., Bhan A., Tsapatsis M. Langmuir. 2013; 29 (22): 6546-6555. https://doi.org/10.1021/la4001494

Copeland J.R., Shi X.-R., Sholl D.S., Sievers C. Langmuir, 2013; 29: 581-593. https://doi.org/10.1021/la304074x

Luzanova V.D., Rozhmanova N.B., Volgin Y.V., Nesterenko P.N., Anal. Chim. Acta, 2023; 1239:340697. https://doi.org/10.1016/j.aca.2022.340697

Lao J., Fu Q., Avendano M., Bentley J.A., Chiang Y., Realff M.J., Nair S. ACS Sustainable Chemistry & Engineering, 2024; 12(38): 14173-14186.https://doi.org/10.1021/acssuschemeng.4c04121

Asnin L.D., Stepanova M.V. J. Chromatogr. A, 2024; 1733:465250. https://doi.org/10.1016/j.chroma.2024.465250

Fujisawa M., Kimura T., Takagi S. Fluid Phase Equil., 1997; 136 (1-2): 197-205. https://doi.org/10.1016/S0378-3812(97)00120-9

Hercigonja R., Rakic V. Science of Sintering, 2015; 47 (1): 83-88.

Snyder L.R., Poppe H. J. Chromatogr. A, 1980; 184: 363-413.

Wach W., Fornefett I., Buttersack C., Buchholz K. Anal. Methods, 2018; 10: 1817-1832. https://doi.org/10.1039/C7AY02634J

Dhale A.D., Myrant L.K., Chopade S.P., Jackson J.E., Miller D.J. Chem. Eng. Sci., 2004; 59(14): 2881-2890. https://doi.org/10.1016/j.ces.2004.02.018

Fortea J., García L., Ruiz J., Oliva M., Arauzo J. Processes, 2021; 9(8): 1438. https://doi.org/10.3390/PR9081438

Ai S., Qin Y., Hong Y., Liu L., Yu W. J. Catalysis, 2022; 413: 870-879. https://doi.org/10.1016/j.jcat.2022.07.034

Published
2025-12-15
How to Cite
Kazakova, V. D., & Nesterenko, P. N. (2025). Patterns of polyol retention on zeolite 13X in polar organic solvents. Sorbtsionnye I Khromatograficheskie Protsessy, 25(5), 664-674. https://doi.org/10.17308/sorpchrom.2025.25/13416