Purification of the YihW Transcription Factor from the Probiotic E. coli Strain Nissle 1917 Using Affinity Chromatography on Spin Columns

  • Tatiana A. Bessonova Institute of Cell Biophysics of RAS (FRC PSCBR RAS), Pushchino, Vavilov Institute of General Genetics of RAS, Moscow, Russian Federation
  • Alexander E. Kolonsky Skolkovo Institute of Science and Technology, Moscow, Russian Federation
  • Egor S. Trubnikov M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Dmitry S. Korshunov M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Anna M. Dukat Skolkovo Institute of Science and Technology, Moscow, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Mikhail S. Gelfand Skolkovo Institute of Science and Technology, Moscow, Russian Federation
  • Maria N. Tutukina Institute of Cell Biophysics of RAS (FRC PSCBR RAS), Pushchino, Vavilov Institute of General Genetics of RAS, Moscow, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
Keywords: Ni-NTA affinity chromatography, recombinant protein production, YihW (CsqR), probiotic E. coli

Abstract

Due to their toxicity, bacterial transcription factors are difficult to be expressed, while their ability to form oligomers makes purification challenging. For each such protein, an individual approach is usually needed. Here, a vector for overproduction of the YihW (CsqR) from probiotic Escherichia coli Nissle 1917 (EcN) transcription factor was constructed, and optimal conditions for its synthesis in homologous expression system were selected: expression in BL21(DE3)-Codon Plus-RIL; induction with 50mM IPTG for 5 hours at 37°С. A rapid and effective purification scheme was developed, based on the affinity chromatography on spin columns with the Ni-NTA sorbent and combining native and denaturing conditions, followed with step dialysis. The developed approach allows obtaining homogenous, 95% pure, functionally active protein. Activity of the produced YihW was confirmed using complex formation with its DNA target and subsequent electrophoretic separation of the DNA-protein complexes in polyacrylamide gel.

Downloads

Download data is not yet available.

Author Biographies

Tatiana A. Bessonova, Institute of Cell Biophysics of RAS (FRC PSCBR RAS), Pushchino, Vavilov Institute of General Genetics of RAS, Moscow, Russian Federation

PhD, research scientist, Institute of Cell Biophysics RAS, Pushchino, Russian Federation; research scientist, Vavilov Institute for General Genetics RAS, Moscow, Russian Federation, e-mail: tatianabessonova66@gmail.com

Alexander E. Kolonsky, Skolkovo Institute of Science and Technology, Moscow, Russian Federation

master's student, Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia, e-mail: alej.kolonsky@gmail.com

Egor S. Trubnikov, M.V. Lomonosov Moscow State University, Moscow, Russian Federation

Master's student, Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, e-mail: etrubnikov2002@mail.ru

Dmitry S. Korshunov, M.V. Lomonosov Moscow State University, Moscow, Russian Federation

student, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, e-mail: korshunds@yandex.ru

Anna M. Dukat, Skolkovo Institute of Science and Technology, Moscow, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

PhD student, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, e-mail: anna.dukat.m@gmail.com

Mikhail S. Gelfand, Skolkovo Institute of Science and Technology, Moscow, Russian Federation

Dr. Sci., professor, vice-president, Skolkovo Institute of Science and Technology, Moscow, Russian Federation, e-mail: mikhail.gelfand@gmail.com

Maria N. Tutukina, Institute of Cell Biophysics of RAS (FRC PSCBR RAS), Pushchino, Vavilov Institute of General Genetics of RAS, Moscow, Skolkovo Institute of Science and Technology, Moscow, Russian Federation

PhD, senior research scientist, Centre of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russian Federation, e-mail: m.tutukina@skoltech.ru

References

Shulami S., Gat O., Sonenshein A. L., Shoham Y. Journal of bacteriology.1999; 181(12): 3695-704. https://doi.org/10.1128/JB.181.12.3695-3704.1999

Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. Molecular systems biology. 2006; 2:2006.0008. https://doi.org/10.1038/msb4100050

Cronan J.E. Molecular microbiology. 2021; 115(6): 1080-1085. https://doi.org/10.1111/mmi.14663

Wen Y., Ouyang Z., Devreese B., He W., Shao Y., Lu W., Zheng F. Protein Science. 2017; 26: 2073-2082. https://doi.org/10.1002/pro.3245

Kaznadzey A., Shelyakin P., Belousova E., Eremina A., Shvyreva U., Bykova D., Eme-lianenko V., Korosteleva A., Tutukina M., Gel-fand M.S. Scientific Reports. 2018; № 8(1): 3177. https://doi.org/10.1038/s41598-018-21534-3

Shimada T., Yamamoto K., Nakano M., Watanabe H., Schleheck D., Ishihama A. Microbiology. 2019; 165(1): 78-89. https://doi.org/10.1099/mic.0.000740

Larson T. J., Ye S., Weissenborn D.L., Hoffmann H.J., Schweizer H. The Journal of Biological Chemistry. 1987; 262(33): 15869-15874. https://doi.org/10.1016/S0021-9258(18)47669-7

Mortensen L., Dandanell G., Hammer K. The EMBO journal. 1989; 8(1): 325-331. https://doi.org/10.1002/j.1460-2075.1989.tb03380.x

Zeng X., Saxild H.H., Switzer R.L. Journal of bacteriology. 2000; 182(7): 1916-22. https://doi.org/10.1128/JB.182.7.1916-1922.2000

Garces F., Fernandez F.J., Gomez A.M., Perez-Luque R., Campos E., Prohens R., Aguilar J., Baldoma L., Coll M., Badia J., Cristina Vega M. Biochemistry. 2008; 47(44): 11424-11433. https://doi.org/10.1021/bi800748x

Sonnenborn, U., Schulze, J. Microbial Ecology in Health and Disease. 2009; 21(3-4): 122-158. https://doi.org/10.3109/08910600903444267

Sonnenborn U. FEMS Microbiol Lett. 2016; 363(19): fnw212. https://doi.org/10.1093/femsle/fnw212

Rybina A.A., Glushak R.A., Bessonova T.A., Dakhnovets A.I., Rudenko A.Y., Ozhi-ganov R.M., Kaznadzey A.D., Tutukina M.N., Gelfand M.S. Scientific Report. 2024; 14(1): 7852. https://doi.org/10.1038/s41598-024-58492-y

Igarashi K., Ishihama A. Cell. 1991; 65(6): 1015-1022. https://doi.org/10.1016/0092-8674(91)90553-b

Bessonova T.A., Lekontseva N.V., Shvyreva U.S., Nikulin A.D., Tutukina M.N., Ozoline O.N. Protein expression & purifica-tion. 2019; 161: 70-77. https://doi.org/10.1016/j.pep.2019.05.001

Potapova, A. V., Ozoline, O. N., Tutu-kina, M. N. The development of effective overproduction and purification approaches for ExuR transcription factor of Escherichia coli using affine chromatography. Sorbtsionnye I Khromatograficheskie Protsessy, 2014; 14(3): 537-539. (In Russ.)

Protokol proizvoditelya dlya Ni-NTA Spin Kit (Qiagen). Rezhim dostu-pa: https://www.qiagen.com/us/products/discovery-and-translational-research/protein-purification/tagged-protein-expression-purification-detection/ni-nta-spin-system. (data obrashheniya: 15.05.2025) (In Russ.)

Ozoline O.N, Fujita N., Murakami K., Ishihama A. European Journal of Biochemis-try. 1998; 253(2): 371-81. https://doi.org/10.1046/j.1432-1327.1998.2530371.x

Laemmli U.K. Nature. 1970; 227(5259): 680-685. https://doi.org/10.1038/227680a0

Published
2025-12-18
How to Cite
Bessonova, T. A., Kolonsky, A. E., Trubnikov, E. S., Korshunov, D. S., Dukat, A. M., Gelfand, M. S., & Tutukina, M. N. (2025). Purification of the YihW Transcription Factor from the Probiotic E. coli Strain Nissle 1917 Using Affinity Chromatography on Spin Columns. Sorbtsionnye I Khromatograficheskie Protsessy, 25(5), 770-781. https://doi.org/10.17308/sorpchrom.2025.25/13445