Verification of the DNDC model for estimating carbon dioxide emissions from agricultural fields using gas chromatography
Abstract
For the first time, the emission of greenhouse gas CO2 was investigated and verified in two test agricultural fields with different tillage methods (no-till, traditional dump plowing) using the gas chromatographic method using planar microfluidic systems and a DNDC simulation model in the Samara region. It is shown that the developed analytical system based on planar microfluidic gas chromatography can be successfully used for direct gas chromatographic measurement of greenhouse gas emissions and helps simplify the analytical complex and reduce the analysis time. It is shown that the CO2 emission values obtained using the DNDC simulation model are in good agreement with the experimental values when adjusting the internal parameters of the program. The best convergence of data is observed for an agricultural field using traditional tillage, while modeling greenhouse gas fluxes in fields with zero tillage can probably be improved by introducing additional adjustment coefficients. After parameterization and verification of the DNDC model, the calculation of carbon dioxide emissions for 2024 showed that the use of no-till technology leads to a slight increase in the total carbon dioxide flux by 1.1 times compared to the field with traditional tillage, which is explained by the increased activity and number of soil microorganisms in the soil when using no-till technology and is quite natural for this type of soil. In addition, the difference in soil emissions from the two test fields is offset (about 2 t/ha) when taking into account total carbon dioxide emissions (soil respiration, agricultural machinery, etc.), which show a significant increase in the total CO2 flux for a field with traditional cultivation (about 9.77 t/ha for traditional plowing compared to 2.5 t/ha when using no-till technology). Thus, the use of no-till technology leads to an overall reduction in CO2 fluxes by reducing fuel combustion during the operation of agricultural machinery and the application of environmentally friendly practices. Modeling using DNDC showed that zero tillage is characterized by a 2-fold higher content of soil microorganisms, and the total organic carbon content in the soil at the end of the year for a field with no-till is 1.3 times higher than in a traditionally cultivated field, which contributes to maintaining health and increasing soil fertility.
Downloads
References
IPCC, 2007.
Robertson G.P. Encyclopedia of Agricul-ture and Food Systems. 2014: 185-196.
García-Calderón N. E., Fuentes-Romero E., Ikkonen E., Sidorova V. Eurasian Soil Sci-ence. 2024; 1-28. https://doi.org/10.1134/S106422932460129X
Karelin D.V., Zamolodchikov D.G., Shil-kin A.V., Popov S.Yu., Kumanyaev A.S., Lopes de Gerenyu V.O., Tel'nova N.O., Gitar-skiy M.O., Tel'nova N.O., Gitarskiy M.L. Eur-asian Soil Sci. 2021; 140: 287-305. https://doi.org/10.1007/s10342-020-01330-3
Kurganova I.N., Rozanova L.N., Myak-shina T.N.N. Eurasian Soil Sci. 2004; 37: 74-78.
Xue Y.-D., Yang P.-L., Luo Y.-P., Li Y.-K., Ren S.-M., Su Y.-P., Niu Y.-T. J. Integr. Agric. 2012; 11: 1354-1364. https://doi.org/10.1016/S2095-3119(12)60134-8
Zavyalova N.E., Mitrofanova E.M., Ka-zakova I.V. Achievements of science and tech-nology of agroindustrial complex. 2013; 11: 19-20.
Six J., Bossuyt H., Degryze S., Denef, K. Soil Till. Res. 2004; 79: 7-31.
Wilson G., Dabney S., McGregor K., Bar-koll, B. T. ASAE. 2004; 47: 119-128.
Yoo J., Woo S.-H., Park K.-D., Chung K.-Y. Applied Biological Chemistry. 2016; 59: 787-797.
Varvel G.E., Wilhelm W. Agron. J. 2008; 100: 1180-1184.
Dawson J.J. C., Smith P. Sci. Total Envi-ron. 2007; 382: 165-190.
Ussiri D.A.N., Lal R. Soil Till. Res. 2009; 104: 39-47.
Sainju U.M., Jabro J.D., Stevens W.B. J. Environ. Qual. 2008; 37: 98-106.
Lu X., Lu X., Tanveer S.K., Wen X., Liao Y. Soil Res. 2016; 54: 38-48. https://doi.org/10.1071/SR14300
Rutkowska B., Szulc W., Sosulski T., Skowrońska M., Szczepaniak J. Soil Tillage Res. 2018; 180: 21-28. https://doi.org/10.1016/j.still.2018.02.012
Li C., Kou Z., Yang J., Cai M., Wang J., Cao C. Atmos. Environ. 2010; 44: 2696-2704.
Bayer C., Zschornack T., Pedroso G.M., da Rosa C.M., Camargo E.S., Boeni M., Mar-colin E., dos Reis C.E.S., dos Santos D.C. Soil Tillage Res. 2015; 145: 118-125. https://doi.org/10.1016/j. still.2014.09.001
Oorts K., Merckx R., Gréhan E., Labreuche J., Nicolardot B. Soil Till. Res. 2007; 95: 133-148.
Cheng-Fang L., Dan-Na Z., Zhi-Kui K., Zhi-Sheng Z., Jin-Ping W., Ming-Li C., Cou-Gui C. PloS One. 2012; 7: e34642. https://doi.org/10.1371/journal.pone.0034642
Pareja-Sánchez E., Cantero-Martínez C., Álvaro-Fuentes J., Plaza-Bonilla D. Soil Till-age Res. 2019; 191: 29-36. https://doi.org/10.1016/j.still.2019.03.007
Abdalla K., Chivenge P., Ciais P., Chap-lot V. Biogeosciences. 2016; 13: 3619-3633. https://doi.org/10.5194/bg-13-3619-2016
Li C., Frolking S., Xiao X., Moore B., Boles S., Qiu J., Huang Y., Salas W., Sass R. Global Biogeochemical Cycles. 2005; 19(3): GB3010. https://doi.org/10.10.1029/2004GB002341
Yadav D., Wang J. Environmental Pollu-tion. 2017; 230: 1040-1049. https://doi.org/10.1016/j.envpol.2017.07.066
Balashov E., Buchkina N., Rizhiya E., Farkas C.S. International agrophysics. 2014; 28(2): 133-142.
Gilhespy S. L., Anthony S., Cardenas L., Chadwick D., del Prado A., Li C., Misselbrook T., Rees R. M., Salas W., Sanz-Cobena A., Smith P., Tilston E.L., Topp C.F.E., Vetter S., Yeluripati J.B. Ecological modelling. 2014; 292: 51-62.
Sukhoveeva O.E., Karelin D.V. Bulletin of St. Petersburg University. Earth Sciences. 2019; 64(2): 363-384. https://doi.org/10.21638/spbu07.2019.211
Unified State Register of Soil Resources of Russia. – Moscow: V.V. Dokuchaev Soil Institute, 2014. https://egrpr.esoil.ru/content/soils/soil118.html




