Verification of the DNDC model for estimating carbon dioxide emissions from agricultural fields using gas chromatography

  • Vladimir I. Platonov Samara National Research University, Samara
  • Natalya M. Trots Samara State Agrarian University, Kinel,
  • Svetlana A. Platonova Samara National Research University, Samara
  • Сергей Владимирович Ворон Судебно-экспертное учреждение федеральной противопожарной службы «Испытательная пожарная лаборатория» по Самарской области, Самара
  • Anna A. Bokova Samara State Agrarian University, Kinel
  • Alexey A. Kurepov Samara National Research University, Samara
Keywords: greenhouse gases, gas chromatography, emission, DNDC, modeling, no-till, traditional plowing, microflu-idic systems

Abstract

For the first time, the emission of greenhouse gas CO2 was investigated and verified in two test agricultural fields with different tillage methods (no-till, traditional dump plowing) using the gas chromatographic method using planar microfluidic systems and a DNDC simulation model in the Samara region. It is shown that the developed analytical system based on planar microfluidic gas chromatography can be successfully used for direct gas chromatographic measurement of greenhouse gas emissions and helps simplify the analytical complex and reduce the analysis time. It is shown that the CO2 emission values obtained using the DNDC simulation model are in good agreement with the experimental values when adjusting the internal parameters of the program. The best convergence of data is observed for an agricultural field using traditional tillage, while modeling greenhouse gas fluxes in fields with zero tillage can probably be improved by introducing additional adjustment coefficients. After parameterization and verification of the DNDC model, the calculation of carbon dioxide emissions for 2024 showed that the use of no-till technology leads to a slight increase in the total carbon dioxide flux by 1.1 times compared to the field with traditional tillage, which is explained by the increased activity and number of soil microorganisms in the soil when using no-till technology and is quite natural for this type of soil. In addition, the difference in soil emissions from the two test fields is offset (about 2 t/ha) when taking into account total carbon dioxide emissions (soil respiration, agricultural machinery, etc.), which show a significant increase in the total CO2 flux for a field with traditional cultivation (about 9.77 t/ha for traditional plowing compared to 2.5 t/ha when using no-till technology). Thus, the use of no-till technology leads to an overall reduction in CO2 fluxes by reducing fuel combustion during the operation of agricultural machinery and the application of environmentally friendly practices. Modeling using DNDC showed that zero tillage is characterized by a 2-fold higher content of soil microorganisms, and the total organic carbon content in the soil at the end of the year for a field with no-till is 1.3 times higher than in a traditionally cultivated field, which contributes to maintaining health and increasing soil fertility.

Downloads

Download data is not yet available.

Author Biographies

Vladimir I. Platonov, Samara National Research University, Samara

candidate of chemical sciences, associate professor, Head of the Department of Ecology and Life Safety, Head of the Climate Research Laboratory, Samara University, Samara, Russian Federation

Natalya M. Trots, Samara State Agrarian University, Kinel,

Doctor of Agricultural Sciences, professor, Head of the Department of Agrochemistry, Soil Science and Agroecology, Vice-Rector for Research, Samara State Agrarian University, Samara, Russian Federation

Svetlana A. Platonova, Samara National Research University, Samara

candidate of chemical sciences, research fellow, Climate Research Laboratory, Samara University, Samara, Russian Federation

Сергей Владимирович Ворон, Судебно-экспертное учреждение федеральной противопожарной службы «Испытательная пожарная лаборатория» по Самарской области, Самара

Head of the Forensic Sector, Lieutenant Colonel of the Internal Service, Federal State Budgetary Institution "Forensic Institution of the Federal Fire Service "Fire Testing Laboratory" for the Samara Region", Samara, Russian Federation

Anna A. Bokova, Samara State Agrarian University, Kinel

graduate student, Samara State Agrarian University, Russian Federation

Alexey A. Kurepov, Samara National Research University, Samara

Engineer, Climate Research Laboratory, Samara University, Samara, Russian Federation

References

IPCC, 2007.

Robertson G.P. Encyclopedia of Agricul-ture and Food Systems. 2014: 185-196.

García-Calderón N. E., Fuentes-Romero E., Ikkonen E., Sidorova V. Eurasian Soil Sci-ence. 2024; 1-28. https://doi.org/10.1134/S106422932460129X

Karelin D.V., Zamolodchikov D.G., Shil-kin A.V., Popov S.Yu., Kumanyaev A.S., Lopes de Gerenyu V.O., Tel'nova N.O., Gitar-skiy M.O., Tel'nova N.O., Gitarskiy M.L. Eur-asian Soil Sci. 2021; 140: 287-305. https://doi.org/10.1007/s10342-020-01330-3

Kurganova I.N., Rozanova L.N., Myak-shina T.N.N. Eurasian Soil Sci. 2004; 37: 74-78.

Xue Y.-D., Yang P.-L., Luo Y.-P., Li Y.-K., Ren S.-M., Su Y.-P., Niu Y.-T. J. Integr. Agric. 2012; 11: 1354-1364. https://doi.org/10.1016/S2095-3119(12)60134-8

Zavyalova N.E., Mitrofanova E.M., Ka-zakova I.V. Achievements of science and tech-nology of agroindustrial complex. 2013; 11: 19-20.

Six J., Bossuyt H., Degryze S., Denef, K. Soil Till. Res. 2004; 79: 7-31.

Wilson G., Dabney S., McGregor K., Bar-koll, B. T. ASAE. 2004; 47: 119-128.

Yoo J., Woo S.-H., Park K.-D., Chung K.-Y. Applied Biological Chemistry. 2016; 59: 787-797.

Varvel G.E., Wilhelm W. Agron. J. 2008; 100: 1180-1184.

Dawson J.J. C., Smith P. Sci. Total Envi-ron. 2007; 382: 165-190.

Ussiri D.A.N., Lal R. Soil Till. Res. 2009; 104: 39-47.

Sainju U.M., Jabro J.D., Stevens W.B. J. Environ. Qual. 2008; 37: 98-106.

Lu X., Lu X., Tanveer S.K., Wen X., Liao Y. Soil Res. 2016; 54: 38-48. https://doi.org/10.1071/SR14300

Rutkowska B., Szulc W., Sosulski T., Skowrońska M., Szczepaniak J. Soil Tillage Res. 2018; 180: 21-28. https://doi.org/10.1016/j.still.2018.02.012

Li C., Kou Z., Yang J., Cai M., Wang J., Cao C. Atmos. Environ. 2010; 44: 2696-2704.

Bayer C., Zschornack T., Pedroso G.M., da Rosa C.M., Camargo E.S., Boeni M., Mar-colin E., dos Reis C.E.S., dos Santos D.C. Soil Tillage Res. 2015; 145: 118-125. https://doi.org/10.1016/j. still.2014.09.001

Oorts K., Merckx R., Gréhan E., Labreuche J., Nicolardot B. Soil Till. Res. 2007; 95: 133-148.

Cheng-Fang L., Dan-Na Z., Zhi-Kui K., Zhi-Sheng Z., Jin-Ping W., Ming-Li C., Cou-Gui C. PloS One. 2012; 7: e34642. https://doi.org/10.1371/journal.pone.0034642

Pareja-Sánchez E., Cantero-Martínez C., Álvaro-Fuentes J., Plaza-Bonilla D. Soil Till-age Res. 2019; 191: 29-36. https://doi.org/10.1016/j.still.2019.03.007

Abdalla K., Chivenge P., Ciais P., Chap-lot V. Biogeosciences. 2016; 13: 3619-3633. https://doi.org/10.5194/bg-13-3619-2016

Li C., Frolking S., Xiao X., Moore B., Boles S., Qiu J., Huang Y., Salas W., Sass R. Global Biogeochemical Cycles. 2005; 19(3): GB3010. https://doi.org/10.10.1029/2004GB002341

Yadav D., Wang J. Environmental Pollu-tion. 2017; 230: 1040-1049. https://doi.org/10.1016/j.envpol.2017.07.066

Balashov E., Buchkina N., Rizhiya E., Farkas C.S. International agrophysics. 2014; 28(2): 133-142.

Gilhespy S. L., Anthony S., Cardenas L., Chadwick D., del Prado A., Li C., Misselbrook T., Rees R. M., Salas W., Sanz-Cobena A., Smith P., Tilston E.L., Topp C.F.E., Vetter S., Yeluripati J.B. Ecological modelling. 2014; 292: 51-62.

Sukhoveeva O.E., Karelin D.V. Bulletin of St. Petersburg University. Earth Sciences. 2019; 64(2): 363-384. https://doi.org/10.21638/spbu07.2019.211

Unified State Register of Soil Resources of Russia. – Moscow: V.V. Dokuchaev Soil Institute, 2014. https://egrpr.esoil.ru/content/soils/soil118.html

Published
2025-12-25
How to Cite
Platonov, V. I., Trots, N. M., Platonova, S. A., Ворон, С. В., Bokova, A. A., & Kurepov, A. A. (2025). Verification of the DNDC model for estimating carbon dioxide emissions from agricultural fields using gas chromatography. Sorbtsionnye I Khromatograficheskie Protsessy, 25(6), 826-838. https://doi.org/10.17308/sorpchrom.2025.25/13474