Classical MD simulations of the IR spectra of amino acids with neutral residues in water. Reassignment of the band around 2300 cm-1

  • Oleg A. Koloskov the student, Department of Quantum Chemistry, Mendeleev University of Chemical Technology, Moscow, e-mail: h820@outlook.com
  • Elena O. Levina the student, Department of Quantum Chemistry, Mendeleev University of Chemical Technology, Moscow, e-mail: 113033@mail.ru
  • Dung M. Bich Ph.D. Student, Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, e-mail: maibichdung86@gmail.com
  • Mikhail V. Vener Dr.Sc., Department of Quantum Chemistry, Mendeleev University of Chemical Technology, Moscow, e-mail: mikhail.vener@gmail.com
Keywords: amino acids zwitter-ions, intermolecular H-bonds

Abstract

Aqueous solutions of glycine, phenylalanine and proline were studied using the classical MD simulations. The amino acids were described by Amber and OPLS-AA force fields. The SPC/E and TIP3P models were used for water. Pair correlation functions of the amino acids evaluated using the Amber-TIP3P scheme agree well with the experimental data. This scheme was used in the subsequent simulations. The IR spectrum was obtained from Fourier transform of the autocorrelation function of classical dipole moment of the amino acids. The theoretical frequencies of the IR-intensive bands of glycine in water, associated with N−H and C−H stretching, and N−H bending vibrations, agree with the experimental data. The appearance of band near 2300 cm-1 is a characteristic feature of the theoretical IR spectra of aqueous glycine and phenylalanine. This band is associated with the stretching vibrations of the NH3+ group forming strong +N−H…Ow bonds with the adjacent water molecules. This band appears in the experimental IR spectrum of aqueous solution of glycine, and was treated as a combination band (Spectrochim. Acta A 61 (2005) 2741). In the theoretical IR spectrum of proline no band around 2300 cm-1 was obtained. This difference could be explained by inability of the proline NH2+ group to form strong +N−H…Ow bonds with water molecules.

Downloads

Download data is not yet available.

References

1.
Aikens C.M., Gordon M.S., J. Am. Chem. Soc., 2006, Vol. 128, pp. 12835-12850.
2.
Rodziewicz P., Doltsinis N.L., Chem.Phys.Chem., 2007, Vol.8, pp. 1959 1968.
3.
Bachrach S.M., J. Phys. Chem. A, 2008, Vol. 112, pp. 3722-3730.
4.
Rai A.K., Fei W., Lu Z., Lin Z., Theor. Chem. Acc., 2009, Vol. 124, pp. 37-47.
5.
Jacquemin D., Michaux C., Perpete E.A., Frison G., J. Phys. Chem. B, 2011, Vol. 115, pp. 3604-3613.
6.
Kim J.Y., Ahn D.S., Park S.W. et al., RSC Adv.,2014, Vol. 4, pp. 16352-16361.
7.
Hugosson H.W., Laio A., Maurer P., Rothlisberger U., J. Comput. Chem., 2006, Vol. 27, pp. 672-684.
8.
Jalkanen K.J., Degtyarenko I.M., Nieminen R.M., Cao X., Nafie L.A., Zhu F., Barron L.D., Theor. Chem. Acc., 2008, Vol.119, pp. 191-210.
9.
Niskanen J., Murugan N.A., Rinkevicius Z.,Vahtras O., Monti S., Carravetta V., Ågren H., Phys. Chem. Chem. Phys., 2013, Vol. 15, pp. 244-254.
10.
Chang J., Lenhoff A.M., Sandler S.I., J. Phys. Chem. B, 2007, Vol. 111, pp. 2098-2106.
11.
Troitzsch R.Z., Martyna G. J., McLain S.E., Soper A.K., J. Crain, J. Phys. Chem. B, 2007, Vol.111, pp. 8210-8222.
12.
Sterpone F., Stirnemann G., Hynes J.T., Laage D., J. Phys. Chem. B, 2010, Vol. 114, pp. 2083-2089.
13.
Horn A.H.C., J. Mol. Model., 2014, Vol. 20, pp. 2478-2592.
14.
Amninder S. V. , Timothy S.G., Scott A.W., Allan M.T., William S.P., Frontiers in Physics, 2015, Vol. 3, pp. 1-15.
15.
Panuszko A., Adamczak B., Czub J., Gojło E., J. Stangret, Amino Acids, 2015, Vol. 47, pp. 2265-2278.
16.
Bastida A., Zuniga J., Requena A., Miguel B., Candela M.E., Soler M.A., J. Phys. Chem. B, 2016, Vol.120, pp. 348-357.
17.
Fedotova M.V., Kruchinin S.E., J. Mol. Liq., 2012, Vol. 169, pp. 1-7.
18.
Fedotova M.V., Dmitrieva O.A., Amino Acids, 2015, Vol. 47, pp. 1015-1023.
19.
Troitzsch R.Z., Tulip P.R., Crain J., Martyna G.J., Biophys. J., Vol. 95, 2008, pp. 5014-5020.
20. Sun J., Bousquet D., Forbert H., Marx D.,
J. Chem. Phys., 2010, Vol. 133, pp. 114508114508114518.
21.
Sun J., Niehues G., Forbert H., Decka D., Schwaab G., Marx D., Havenith M., J. Am. Chem. Soc., 2014, Vol.136, pp. 5031-5038.
22.
Tuñón I., Rinaldi D., Ruiz-López M.F., Rivail J.L., J. Phys. Chem., 1995, Vol. 99, pp. 3798-3805.
23. Da Silva E.F., Svendsen H.F., Merz K.M.,
J. Phys. Chem. A, 2009, Vol. 113, pp. 64046409.
24.
Brancato G., Barone V., Rega N., Theor. Chem. Acc., 2007, Vol. 117, pp. 1001-1015.
25.
Barone V., Carnimeo I., Scalmani G., J. Chem. Theory Comput., 2013, Vol. 9, pp. 20522071.
26.
Vener M. V., Shenderovich I. G., Rykounov A. A., Theor. Chem. Acc., 2013, Vol. 132, pp. 1-9.
27.
Lee Y.S., Krauss M., J. Am. Chem. Soc., 2004, Vol. 126, pp. 2225–2230.
28.
Mathias G., Marx D., Proc. Natl. Acad. Sci. USA, 2007, Vol. 104, pp. 6980–6985.
29.
Kaliman I., Grigorenko B., Shadrina M., Nemukhin A., Phys. Chem. Chem. Phys., 2009, Vol. 11, pp. 4804-4807.
30.
Goyal P., Ghosh N., Phatak P., Clemens M., Gaus M. et al., J. Am. Chem. Soc., 2011, Vol. 133, pp. 14981-14997.
31.
Liang T., Walsh T. R., Phys. Chem. Chem. Phys., 2006, Vol. 8, pp. 4410–4419.
32.
Debiec K.T., Gronenborn A.M., Chong L.T., J. Phys. Chem. B, 2014, Vol. 118, pp. 6561–6569.
33.
Iftimie R., Tuckerman M. E., J. Chem. Phys., 2005, Vol. 122, pp. 214508 (1-11).
34.
Gaigeot M.P., Phys. Chem. Chem. Phys., 2010, Vol. 12, pp. 3336-3359.
35.
Rocchi C., Bizzarri A.R., Cannistraro S., Phys. Rev. E, 1998, Vol. 57, pp. 3315-3325.
36.
Barth A., Biochim. Biophys. Acta, 2007, Vol. 1767, pp. 1073-1101.
37.
Wolpert M., Hellwig P., Spectrochim. Acta A, 2006, Vol. 64, pp. 987-1001.
38.
Derbel N., Hernández B., Pflüger F., Liquier J., Geinguenaud F. et al., J. Phys. Chem. B, 2007, Vol. 111, pp.1470–1477.
39.
Daněček P., Kapitán J., Baumruk V., Bednárová L. et al., J. Chem. Phys., 2007, Vol. 126, pp. 224513 (1-13 ).
40.
Chowdhry B.Z., Dines T.J., Jabeen S., Withnal R., J. Phys. Chem. A, 2008, Vol. 112, pp. 10333-10347.
41. Panuszko A., Smiechowski M., Stangret J.,
J. Chem. Phys., 2010, Vol. 134, pp. 115104 (19).
42. Hernández B., Pflüger F., Adenier A. et al., J. Phys. Chem. B, 2010, Vol. 114, pp.1531915330.
43. Moreno J.R.A., Moreno M.M.Q., Ureña
F.P. et al., Asymmetry, 2012, Vol. 23, pp. 10841092.
44. Kumar S., Rai A.K., Singh V.B., Rai S.B., Spectrochimica Acta Part A, 2005, Vol. 61, pp. 2741-2746.
45. Kitadai N., Yokoyama T., Nakashima S.,
J. Mol. Struct., 2010, Vol. 981, pp. 179-186.
46.
Kumar S., Elixir. Vib. Spec., 2011, Vol. 39, pp. 4996-4999.
47.
Johnson S.L., Rumon K.A., J. Phys. Chem., 1965, Vol. 69, pp. 74-86.
48. Kong S., Shenderovich I.G., Vener M.V.,
J. Phys. Chem. A, 2010, Vol. 114, pp. 23932399.
49.
Mukherjee A., Tothadi S., Chakraborty S. et al., Cryst. Eng. Comm., 2013, Vol. 15, pp. 4640-4654.
50.
Chakraborty S., Ganguly S., Desiraju G.R., Cryst. Eng. Comm., 2014, Vol. 16, pp. 4732-4741.
51.
Vener M.V., Odinokov F.V., et al., J. Chem. Phys., 2015, Vol. 142, pp. 215106 (1-9).
52.
Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, Vol. 77, pp. 3865-3868.
53.
Schwegler E., Grossman J.C., Gygi F., Galli G., J. Chem. Phys., 2004, Vol. 121, pp. 5400-5409.
54.
Jonchiere R., Seitsonen A.P. et al., J. Chem. Phys., 2011, Vol. 135, pp. 154503 (110).
55.
Needham T.E., Paruta A.N., Gerraughty R.J., J. Pharm. Sci., 1971, Vol. 60, pp. 565-567.
56.
Gomaa E.A., American Journal of Biochemistry, 2012, Vol. 2, pp. 25-28.
57.
Berendsen H. J. C., Spoel D., Drunen R., Comp. Phys. Comm., 1995, Vol. 91, pp. 43-56.
58.
Lindorff-Larsen K., Piana S. et al., Proteins, 2010, Vol. 78, pp. 1950-1958.
59. Jorgensen W.L., Chandrasekhar J., Madura
J.D. et al., J. Chem. Phys., 1983, Vol. 79, pp. 926-935.
60.
Jorgensen W.L., Maxwell D.S., Tirado-Rives J., J. Am. Chem. Soc., 1996, Vol. 118, pp. 11225-11236.
61.
Kaminski G.A., Friesner R.A. et al., J. Phys. Chem. B, 2001, Vol. 105, pp. 6471-6474.
62.
Berendsen H. J. C., Grigera J. R., Sraatsma T.P., J. Phys. Chem., 1987, Vol. 91, pp. 62696271.
63. Berendsen H. J. C., Postma J. P. M., et al.,
J. Chem. Phys., 1984, Vol. 81, pp. 3684-3690.
64.
Parrinello M., Rahman A., J. Appl. Phys., 1981, Vol. 52, pp. 7182-7190.
65.
Perera U. L., Berkowitz M. L., Darden T. Et al., J. Chem. Phys., 1995, Vol. 103, pp. 85778593.
66.
Bosma W.B., Fried L.E., Mukamel S., J. Chem. Phys., 1993, Vol. 98, pp. 4413-4421.
67.
Vener M.V., Sauer J., Phys. Chem. Chem. Phys., 2005, Vol. 7, pp. 258-263.
68.
Praprotnik M., Janezic D., Mavri J., J. Phys. Chem. A, 2004, Vol. 108, pp. 11056– 11062.
69.
Praprotnik M., Janeži D., J. Chem. Phys., 2005, Vol. 122, pp. 174103(1-10).
70.
Yu. H., Cui Q., J. Chem. Phys., 2007, Vol. 127, pp. 234504(1-8).
71.
Andrews C.T., Elcock A.H., J. Chem. Theory Comp., 2013, Vol. 9, pp. 4585-4602.
72.
Sugawara K., Kameda Y., Usuki T. et al., Bull. Chem. Soc. Jpn., 2000, Vol. 73, pp. 19671972.
73.
McLain S.E., Soper A.K., Terry A.E., Watts A., J. Phys. Chem. B, 2007, Vol. 111, pp. 4568-4580.
74.
Fedotova M.V., Dmitrieva O.A., Russ. J. Phys. Chem. A, Vol., 2014, Vol. 88, pp. 794797.
75.
Mary Y.S., Ushakumarib L., Harikumarc B., Varghesed H.T., Panickerb C.Y., J. Iran Chem. Soc., 2009, Vol. 6, pp. 138-144.
76.
Esadze A., Li D.W., Wang T., Bruschweiler R., Iwahara J., J. Am. Chem. Soc., 2011, Vol. 133, pp. 909-919 .
Published
2019-11-15
How to Cite
Koloskov, O. A., Levina, E. O., Bich, D. M., & Vener, M. V. (2019). Classical MD simulations of the IR spectra of amino acids with neutral residues in water. Reassignment of the band around 2300 cm-1. Sorbtsionnye I Khromatograficheskie Protsessy, 16(4). Retrieved from https://journals.vsu.ru/sorpchrom/article/view/1383