The influence of ionogenic groups’ nature and concentration on sorption properties and separation performance of ultrafiltraton membranes based on aromatic polyamides concerning lisozyme
Abstract
Investigation results of sorption of lisozyme by membranes based on poly-mphenylenisophthalamide,
co-polymers of m-phenylenisophthalamide of different composition with
sulfonate-containing fragment and mixtures of poly-m-phenylenisophthalamide with co-polymer
acrilonitrile with dimethyldiallylammonium chloride in static mode and under ultrafiltration condition
have been presented. It has been shown that the Coulomb forces are the dominant ones that define the
protein/membrane interaction in the given systems, but the contribution of hydrophobic interactions is
also sufficient. It is the repulsion of Coulomb forces in the system protein/membrane that can assure the
optimum compromise of such membrane properties as selectivity and permeability.
Downloads
References
2.Jordanskii A.L., Markin V.S., Razumovsky L.P., Kosenko R.Y., Tarasova N.A.,
Zaikob G.E. Diffusion model of protein adsorption an effect of protein layer composition
on water permeability for ultrafiltration membranes // Desalination. 1996. 104. № 1-2.
. 113-118.
3.Salgin S., Takac S., Ozdamar T. Adsorption of BSA on polyether sulfone ultrafiltration
membranes: Determination of interfacial interaction energy and effective diffusion
coefficient // J. Membr. Sci. 2006. 278. № 1-2. P. 251-260.
4.Chan R., Chen V. Characterization of protein fouling on membranes: opportunities and
challenges // J. Membr. Sci. 2004. 242. № 1 - 2. P. 169 – 188.
5.Norde W., Luklema J. Why proteins prefer interfaces // J. Biomater. Sci. Polymer. Ed.
1991. Vol. 2. P. 183- 202.
6. Ramachandhran V., Ghosh A.K., Prabhakar S., Tewari P.K. Separation behavior of
composite polyamide membranes from mixed amines: effects of interfacial reaction
condition and chemical post-treatment // Separ. Sci. and Technol. 2009. 44. № 3. P. 599-
614.
7. Hurwitz G., Guillen G.R., Hoek E.M.V. Probing polyamide membranes surface
charge, zeta potential, wettability and hydrophilicity with contact angel measurements // J.
Membr. Sci. 2010. 349. № 1- 2. P. 349-357.
8. Xu J., Feng X., Gao C. Surface modification of thin-film-composite polyamide
membranes for improved reverse osmosis performance // J. Membr. Sci. 2011. 370. № 1-2.
P. 116 – 123.
9. Черкасов А.Н. Экспресс-анализ структуры ультрафильтрационных мембран в
ходе их разработки // Мембраны. Серия Критические технологии. 2002. № 14. С. 3-7.
10. Березкин В.В., Киселева О.А., Нечаев А.Н., Соболев В.Д., Чураев Н.В.
Электропроводность растворов KCl в порах ядерных фильтров и их
электроповерхностные свойства // Коллоидный журнал. 1994. 56. № 3. С. 319-325.
11. Lehninger A.L. Biochemistry. New York: Worth Publ. 1972.
12. Phielips D.C. Lysozyme. New York: Acad. Press. 1974.
13. Li W., Li S. A study on the adsorption of BSA onto electrostatic microspheres: role
of surface groups // J. Colloids and Surfaces. 2007. 295. № 1 - 2. P. 159- 164.
14. Molek J., Ruanjaikaen K., Zydney A. Effect of electrostatic interactions on
transmission of PEGylated proteins through charged ultrafiltration membranes // J. Membr.
Sci. 2010. 353. № 1- 2. P. 60-69.
15. Jones K.L., O'Melia Ch.R. protein and humic acid adsorption onto hydrophilic
membrane surfaces: effect of pH and ionic strength // J. Membr. Sci. 2000. 165. № 1- 2.
P. 31-46.
16. Тенфорд Ч. Физическая химия полимеров. М.: Химия. 1965. 772 с.
17. Tsuchida E., Abe K. Polyelectrolyte complexes // Developments in ionic polymers:
London, New York. 1983. P. 191-266.
18. Vasheghani F., Rajabi F.H., Ahmadi M.H., Nouhi S. Stability and thermodynamic
parameters of some selective intermacromolecular complexation // Polymer Bulletin. 2006.
Vol. 56. P. 395- 404.
19. Kopac T., Bozgeyik K., Yener J. Effects of pH and temperature on the adsorption of
bovine serum albumin onto titanium dioxide // Colloids and Surfaces. A. 2008. 322.
№ 1-3. Р. 19-28.