The assignment of the bands in IR spectra of aqueous solutions of glycine on the basis of quantum-chemical calculations

  • Elena V. Butyrskaya doctor of chemical sciences, professor of department of analytical chemistry of chemical faculty of Voronezh State University, Voronezh, е-mail: bev5105@yandex.ru
  • Ludmila S. Nechaeva candidate of chemical sciences, research associate of department of analytical chemistry chemical faculty of Voronezh State University, Voronezh
  • Vladimir A. Shaposhnik doctor of chemical sciences, professor of department of analytical chemistry of chemical faculty of Voronezh State University, Voronezh
  • Ekaterina I. Drozdova 4th year student faculty of applied mathematics, informatics and mechanics of Voronezh State University, Voronezh
Keywords: IR spectrum, amino acid, glycine, standardless structural-group analysis, quantumchemical simulation, Gaussian03.

Abstract

Quantum-chemical calculations of IR spectra of aqueous solutions of glycine in the zwitterionic,
cation and anion forms is made by using the program Gaussian03 method MP2 in the basis 6-31G+(d).
Account of the environment carried out by using the model solvation of polarization continuum Tomasi.
Detailed assignment of IR bands carried out on the basis of research waveform corresponding to a certain
frequency the program GaussView and calculated amplitudes of atomic vibrations.

Downloads

Download data is not yet available.

References

1. Freymann M., Freymann R., Rumpf P. Influence dissimulatrice de la tétracoordinence
de l'azote // J. Phys. Radium. 1936. V. 7. P. 30-36.
2. Randall H.M., Fowler R.G., Fuson N., Dangl J.R. Infrared determination of organic
structures. New York: Van Nostrand Company. Inc., 1949.
3. Fuson N., Josien M.L., Powell R.L. Infrared spectroscopy of compounds having
biological interest // J. Amer. Chem. Soc. 1952. V. 74. № 1. P. 1-3.
4. Thompson H.W., Nicholson D.L., Short L.N. Short Vibrational spectra of complex
molecules. The infra-red spectra of complex molecules // Discuss. Faraday Soc. 1950. V.
9. P. 222-235.
5. Беллами Л. ИК спектры сложных молекул. М.: Изд-во иностранной литературы,
1963. 590 с.
6. Якубке Х.-Д., Ешкайт Х. Аминокислоты, пептиды, белки. М.: Мир, 1985. 82 с.
7. Baran J., Ratajczak H. Polarised vibrational studies of the α-glycine single crystal. Part
I. Polarised Raman spectra—the problem of effective local Raman tensors for the glycine
zwitterions // Vibrational Spectroscopy. 2007. V. 43. № 1. P. 125-139.
8. Murli C, Thomas S, Venkateswaran S, Sharma S.M. Raman spectroscopic
investigation of a-glycine at different temperatures // Physica B. 2005. V. 357. № 3-4. P.
340-347.
9. Чернобай Г.Б., Чесалов Ю.А., Бургина Е.Б., Дребущак Т.Н., Болдырева Е.В.
Исследование влияния температуры на ИК спектры кристаллических аминокислот,
дипептидов и полиаминокислот // Журн. структур. химии. 2007. Т. 48. № 2. С. 339-
347.
10. Qin Zhou, Qun Tao, Jia-xun Two-dimensional correlation analysis of the infrared
spectrum of alanine at different temperatures // Spectroscopy and Spectral Analysis. 2003.
№ 4. P. 685-688.
11. Зяблов А.Н., Елисеева Т.В., Селеменев В.Ф., Самойлова Н.Н. Гидратация
нейтральных аминокислот в разных ионных формах // Журн. физ. химии. 2001. Т. 75.
№ 2. С. 329-332.
12. Ding Y., Krogh-Jespersen K.J. Intramolecular interactions and intramolecular
hydrogen bonding in conformers of gaseous glycine // Comput. Chem. 1996. V. 17. P. 338-
349.
13. Wang W. The 1:1 glycine-water complex: some theoretical observations // J. Mol.
Struct. (Theochem). 2002. V. 618. № 3. P. 235-244.
14. Wang W., Zheng W., Pu X., Wong N.B., Tian A. Some theoretical observations on
the 1:1 glycine –zwitterion water complex // J. Mol. Struct. (Theochem). 2003. V. 626. №
1-3. P. 127-132.
15. Danecek P., Kapitan J., Baumruk V., Bednarova L., Kopecky V., Bour P.
Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and
proline zwitterions // J. Chem. Phys. 2007. V. 126. № 22. P. 224513 (1-13).
16. Tortonda F.R., Pascual-Ahuir J.L., Silla E., Tunon I., Ramırez F.J. Aminoacid
zwitterions in solution: Geometric, energetic, and vibrational analysis using density
functional theory-continuum model calculations // J. Chem. Phys. 1998. V. 109. № 2. Р.
592-602.
17. Derbel N., Hernandez B., Pflüger F., Liquier J., Geinguenaud F., Jaïdane N.,
Lakhdar Z.B., Ghomi M. Vibrational Analysis of Amino Acids and Short Peptides in
Hydrated Media. I. L-glycine and L-leucine // J. Phys. Chem. B. 2007. V. 111. № 6. P.
1470-1477.
18. Chowdhry B.Z., Dines T.J., Jabeen S., Withnall R. Vibrational Spectra of r-Amino
Acids in the Zwitterionic State in Aqueous Solution and the Solid State: DFT Calculations
and the Influence of Hydrogen Bonding // J. Phys. Chem. A. 2008. V. 112. P. 10333-
10347.
19. Hernandez B., Pfluger F., Nsangou M., Ghomi M. Vibrational Analysis of Amino
Acids and Short Peptides in Hydrated Media. IV. Amino Acids with Hydrophobic Side
Chains: L-Alanine, L-Valine, and L-Isoleucine // J. Phys. Chem. B. 2009. V. 113. P. 3169-
3178.
20. Frish M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R.,
Zakrzewski V.G., Montgomery J.A., Stratmann R.E., Burant J.C., Dapprich S., Millam
J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M.,
Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A.,
Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K.,
Foresman J.B., Cioslowski J., Ortiz J.V., Stefanov B.B., Liu G., Liashenko A., Piskorz P.,
Komaromi I., Gomperts R., Martin R.L., Fox D.J,; Keith T., Al-Laham M.A., Peng C.Y.,
Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B.G., Chen W.,
Wong M.W., Andres J. L., Head-Gordon M., Re-plogle E.S., Pople J.A. Gaussian 03.
Gaussian Inc.: Pittsburg, PA, 2003.
21. Бутырская Е.В. Компьютерная химия: основы теории и работа с программами
Gaussian и GaussView. М.: Солон-пресс, 2011. 224 с.
22. Gontrani L., Mennucci В., Tomasi J. Glycine and alanine: a theoretical study of
solvent effects upon energetics and molecular response properties // J. Mol. Struct.
(Theochem). 2000. V. 500. № 1-3. P. 113-127.
23. Tortonda F.R.; Pascual-Ahuir J.-L. Silla E., Tuñon I., Ramírez F.J. Proton Transfer
between Water Molecules. Geometric, Energetic and Vibrational Analysis Using Density
Functional Theory-Continuum Model Calculations // J. Chem. Phys. 1998. V. 109. № 2. P.
592-602.
24. Almlof J., Kvick A., Thomas J.O. Electron density distribution in a-glycine // J.
Chem. Phys. 1973. V. 59. № 8. P. 3901-3907.
25. Lehmann M.S., Koetzle T.F., Hamilton W.C. Precision neutron diffraction structure
of aqueous glycine solutions // J. Am. Chem Soc. 1972. V. 94. № 8. P. 2657-2662.
26. Michaux С., Wouters J., Jacquemin D., Perpète E.A. A theoretical investigation of
the hydrated glycine cation energetics and structures // Chemical Physics Letters. 2007. V.
445. № 1-3. P. 57-61.
27. Scott A.P., Radom L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-
Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and
Semiempirical Scale Factors // J. Phys.Chem. 1996. V. 100. № 41. P. 16502-16513.
28. Fischer W.F., Eysel H.H. Raman and FTIR spectroscopic study on water structural
changes in aqueous solution of aminoacids and related compounds // J. Mol. Struc. 1997.
V. 415. № 3. P. 249-257.
Published
2019-11-25
How to Cite
Butyrskaya, E. V., Nechaeva, L. S., Shaposhnik, V. A., & Drozdova, E. I. (2019). The assignment of the bands in IR spectra of aqueous solutions of glycine on the basis of quantum-chemical calculations. Sorbtsionnye I Khromatograficheskie Protsessy, 12(4). Retrieved from https://journals.vsu.ru/sorpchrom/article/view/1832