Piezoelectric sensors on the basis of molecularly imprinted polymers. Formation of the recognizing layers on surface of the sensors electrode

  • В. Н. Чернышова Chernyshova Veronika N. - student, Federal government budgetary of higher education «Lipetsk State Technical University», Lipetsk
  • Т. Н. Ермолаева Ermolaeva Tatyana N. – doctor of chemistry, professor, Federal government budgetary of higher education «Lipetsk State Technical University», Lipetsk, etn@stu.lipetsk.ru
  • Е. В. Чеснокова Chesnokova Ekaterina V. - student, Federal government budgetary of higher education «Lipetsk State Technical University», Lipetsk
  • О. И. Бессонов Bessonov Oleg I. – student, Federal government budgetary of higher education «Lipetsk State Technical University», Lipetsk
Keywords: piezoelectric sensor, molecularly imprinted polymers, recognizing layer, photopolymerization, electropolymerization, spin-coating, sandwich-casting, superficial imprinting, soft lithography

Abstract

This article presents and discusses the results of using molecularly imprinted polymers as specific
recognizing materials in the pyezoelectric sensors intended for the detection micro- and macromolecules in
liquid solutions. The main attention was paid to considering the technology of the formation of the
recognizing MIP layer directly. In particular in more detail ways for the preparation of molecularly imprinted
films by the photopolymerization, electropolymerization, spin-coating and the sandwich-casting methods
were discussed. The influence on the nature of functional and cross-monomers, the initiator of
polymerization and the design of the template on the structure and the distinguishing properties of MIP films
is shown. When forming MIP films by the electropolymerization method, polymers on the basis of
polypyrrole, polyphenylenediamine and polythiophene, the synthesis of which is described in more detail, are
applied most frequently. The mechanism of imprinting template molecules in a polymer matrix is described.
Conditions for the electrochemical synthesis of thiophene derivatives with different structures, ensuring high
constants of re-binding the surface imprint and a high specificity of molecular recognition of the target
analyte are also discussed in detail. Also, modern methods of superficial imprinting were analyzed, in
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 2
152
particular the method of soft lithography for the formation of the recognition layer for macromolecules and
bioanalytes was paid special attention to.

Downloads

Download data is not yet available.

References

1. Piletsky S., Turner A. Molecular imprinting
of polymers. Georgetown, Texas: Landes
Bioscience, 2006, 208 p.
2. Ye L., Haupt K. Anal. Bioanal. Chem,
2004, Vol. 378, pp. 1887-1897.
3. Dickert F.L., Lieberzeit P., Tortschanoff M.
Sensors and Actuators B, 2000, Vol. 65,
pp. 186–189.
4. Sellergren B. Molecularly Imprinted
Polymers Man-made mimics of antibodies and
their applications in analytical chemistry.
Amsterdam: Elsevier, 2001, 557 p.
5. Wulff G. Angew. Chem. Int. Ed. Engl,
1995, Vol. 34, pp. 1812-1832.
6. Yaqub S., Latif U., Dickert F.L. Sensors
and Actuators B, 2011, Vol. 160, pp. 227-233.
7. Baggiani C., Anfossi L., Giovannoli C.
Analyst, 2008, Vol. 133, pp. 719-30.
8. Uludag Y., Piletsky S.A., Turner A.P.F et
al. FEBS Journal, 2007, Vol. 274, pp. 5471-
5480.
9. Piacham T., Josell A., Arwin H. et al. Chim.
Acta, 2005, Vol. 536, pp. 191–196.
10. Cao L., Zhoub X. C., Li S.F.Y. Analyst,
2001, Vol. 126, pp. 184–188.
11. Gültekin A., Karanfil G., Sönmezoğlu S.
et al. Materials Science and Engineering C,
2014, Vol. 42, pp. 436-442.
12. Wu A.H., Syu M.J. Biosens. Bioelectron,
2006, Vol. 21, pp. 2345-2353.
13. Tsuru N., Kikuchi M., Kawaguchi H. et
al. Thin Solid Films, 2006, Vol. 499, pp. 380–
385.
14. Shoji R., Takeuchi T., Kubo I. Anal.
Chem, 2003, Vol. 75, No. 18, pp. 4882-4886.
15. Panasyuk-Delaney T., Mirsky V.M.,
Wolfbeis O.S. Electroanalysis, 2002, Vol. 14,
pp. 221-224.
16. Lotierzo M., Henry O.Y.F., Piletsky S.A.
et al. Biosens. Bioelectron, 2005, Vol. 20, No.
11, pp. 2197–2202.
17. Malitesta C, Losito I, Zambonin PG, Anal
Chem, 1999, Vol. 71, pp. 1366-1370.
18. Percival A.J., Stanley S., Galle M. et al.
Anal. Chem, 2001, Vol. 73, pp. 4225-4228.
19. Piacham T., Josell A., Arwin H. et al.
Anal. Chim. Acta, 2005, Vol. 536, pp. 191-196.
20. Kikuchi M., Tsuru N., Shiratori S. et al.
Adv. Mater, 2006, Vol. 7, pp. 156-161.
21. Dickert F.L., Bindeus O.H.R., Mann K.J.
et al.. Bioanal. Chem, 2004, Vol. 378, No 8,
pp. 1929-1934.
22. Lin T.Y., Hub C.H., Chou T.C. Biosens.
Bioelectron, 2004, Vol. 20, pp. 75-81.
23. Ebarvia B.S., Sevilla F.B. Sensors and
Actuators B, 2005, Vol. 107, No 2,
pp. 782-790.
24. Liang C., Peng H., Zhou A. et al. Chim.
Acta, 2000, Vol. 415, pp. 135-141.
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 2
165
25. Percival A.J., Stanley S., Braithwaite A.
et al. Analyst, 2002, Vol. 127, No 8,
pp. 1024-1026.
26. Zhang Z., Li H., Liao H. et al. Sensors
and Actuators B, 2005, Vol. 105, No 2,
pp. 176–182.
27. Tan Y., Zhou Z., Wang P. et al. Talanta,
2001, Vol. 55, No 2, pp. 337-347.
28. Tan Y., Peng H., Liang C. et al. Sensors
and Actuators B, 2001, Vol.73, No 2-3,
pp.179-184.
29. Peng H., Liang C., He D. et al. Anal. Lett,
2000, Vol. 33, pp.793-808.
30. Avila M., Zougagh M., Escarpa A. et al.
Talanta, 2007, Vol. 72, No 4, pp.1362-1369.
31. Liu F., Liu X., Ng S.C. et al. Sensors and
Actuators B, 2006, Vol.113, No 1, pp. 234-240.
32. Kugimiya A., Takeuchi T.
Electroanalysis, 1999, Vol. 11, pp. 1158-1160.
33. Lee M.-H., Thomas J. L., Tseng H.-Y. et
al. ACS Appl. Mater. Interfaces, 2011, Vol.3,
pp. 3064-3071.
34. Shi F., Liu Z., Wu G. et al. Adv. Funct.
Mater, 2007, Vol. 17, No 11, pp. 1821-1827.
35. Malitesta C., Losito I., Zambonin P.G.
Anal. Chem, 1999, Vol.71, No 7, pp. 1366-
1370.
36. Malitesta С., Mazzotta Е., Picca R. et al.
Anal. Bioanal. Chem, 2011, Vol. 402,
pp.1827-1846.
37. Pérez-Moral N., Mayes A.G.
Bioseparation, 2002, Vol.10, pp.287-299.
38. Vandevelde F., Belmont A.-S., Pantigny
J. et al. Adv. Mater, 2007, Vol. 19, No 21,
pp. 3717-3720.
39. Tokonami S., Shiigi H., Nagaoka T. Anal.
Chim. Acta, 2009, Vol. 641, No 1, pp.7-13.
40. Willner I., Willner B., Tel-Vered R.
Electroanalysis, 2011, Vol. 23, pp. 13-28.
41. Avila M., Zougagh M., Rios A. Trends in
Analytical Chemistry, 2008, Vol. 27, No 1,
pp. 54-65.
42. Arenas L.F., Ebarvia B.S., Sevilla F.B.
Anal. Bioanal. Chem, 2010, Vol. 397, No 7,
pp. 3155-3158.
43. Zougagh M., Rios A., Valcarcel M. Anal.
Chim. Acta, 2005, Vol. 539, No 1, pp. 117-124.
44. Avila M., Zougagh M., Escarpa A. et al.
Talanta, 2007, Vol. 72, No 4, pp. 1362-1369.
45. AOAC International, Official Methods of
Analysis, 15th Edition, AOAC International,
Gaithersburg, MD, USA, 1990, 758 p.
46. Mirsky V., Hirsch T., Piletsky S.A. et al.
Angew. Chem, 1999, Vol. 38, No 8,
pp.1108-1110.
47. Deore B., Chen Z., Nagaoka T. Anal.
Chem, 2000, Vol. 72, No 17, pp.3989-3994.
48. Deore B., Chen Z., Nagaoka T. Anal. Sci,
1999, Vol. 15, No 9, pp.827-828.
49. Syritski V., Reut J., Menaker A. et al.
Electrochim. Acta, 2008, Vol. 53, No 6,
pp. 2729-2736.
50. Kong Y., Zhao W., Yao S. et al. J. Appl.
Polym. Sci, 2010, Vol.115, No 4,
pp.1952-1957.
51. Shiigi H., Yakabe H., Kishimoto M. et al.
Microchim. Acta, 2003, Vol. 143, pp.155-162.
52. Ebarvia B.S., Cabanilla S., Sevilla F.
Talanta, 2005, Vol. 66, No 1, pp.145-152.
53. Ebarvia B.S., Sevilla F. in proc. Asian
Conf. Sensors Int. Conf. New Tech. Pharm.
Biomed. Res., 2005, Kuala Lumpur, Malaysia,
pp. 34-38.
54. Albano D.R., Sevilla F. Sensors and
Actuators B, 2007, Vol. 121, pp. 129-134.
55. Maouchea N., Guergouri M., GamDerouich
S. et al. J. Electroanal. Chem, 2012,
Vol. 685, pp.21-27.
56. Zheng X., Lin R., Zhou X. et al. Anal.
Methods, 2012, Vol. 4, pp. 482-487.
57. Peng H., Zhang Y., Zhang J. et al.
Analyst, 2001, Vol.126, No 2, pp. 189–194.
58. Feng L., Liu Y., Tan Y. et al. Biosens.
Bioelectron, 2004, Vol. 19, No 11,
pp. 1513-1519.
59. Peng H., Liang C., Zhou A. et al. Anal.
Chim. Acta, 2000, Vol. 423, No 2, pp. 221-228.
60. Pietrzyk A., Suriyanarayanan S., Kutner
W. et al. Anal. Chem, 2009, Vol. 81, No 7,
pp. 2633-2643.
61. Pietrzyk A., Suriyanarayanan S., Kutner
W. et al. Anal .Chem, 2009, Vol. 81, No 24,
pp. 10061-10070.
62. Pietrzyk A., Suriyanarayanan S., Kutner
W. et al. Biosens. Bioelectron, 2010, Vol. 25,
No 11, pp. 2522-2529.
63. Pietrzyk A., Suriyanarayanan S., Kutner
W. et al. Bioelectrochemistry, 2010, Vol. 80,
No 1, pp. 62-72.
64. Apodaca D.C., Pernites R.B., Ponnapati
R.R. et al. Appl Mater Interfaces, 2011, Vol. 3,
No 2, pp. 191-203.
65. Chen J., Xu G.-R., Bai L.-Y. et al. Int. J.
Electrochem. Sci, 2012, Vol. 7, pp.9812-9824.
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 2
166
66. Vergara A.V., Pernites R.B., Pascua S. et
al. J. Pol. Sci. A, 2012, Vol. 50, No 4,
pp. 675-685.
67. Li J., Zhao J., Wei X. Sensors and
Actuators B, 2009, Vol. 140, No 2, pp. 663-669.
68. Karaseva N.A., Soboleva I.G., Ermolaeva
T.N. Sorbtsionnye i khromatograficheskie
protsessy], 2013, Vol. 13, No 1, pp. 5-9.
69. Liao H., Zhang Z., Nie L. et al. Biochem.
Biophys. Methods, 2004, Vol. 59, No 1,
pp. 75-87.
70. Karaseva N.A., Soboleva I.G., Ermolaeva
T.N. Sorbtsionnye i khromatograficheskie
protsessy, 2011, Vol. 11, No 1, pp. 56-61.
71. Hayden O., Dickert F.L. Adv. Mater,
2001, Vol. 13, No 19, pp. 1480-1483.
72. Yoshida M., Uezu K., Goto M. et al. J.
Appl. Polym. Sci, 2000, Vol. 78, No 4,
pp. 695-703.
73. Jenik M., Seifner A., Krassnig S. et al.
Biosens. Bioelectron, 2009, Vol. 25, pp. 9-14.
74. Lieberzeit P.A, Gazda-Miarecka S.,
Halikias K. et al. Sensors and Actuators B,
2005. Vol. 111-112, pp. 259-263.
75. Mujahid A, Dickert F. in book: Lee S.-
W., Kunitake T. Handbook of molecular
imprinting - advanced sensor applications.
Singapore: Pan Stanford Publishing, 2012,
pp. 527-570.
76. Ge Y., Turner A.P.F. Trends in
Biotechnology, 2008, Vol. 26, No 4,
pp. 218-224.
77. Dickert F.L., Hayden O. Anal. Chem,
2002, Vol. 74, No 6, pp. 1302-1306.
78. Lieberzeit P.A., Dickert F.L. Anal.
Bioanal. Chem, 2008, Vol. 391, No 5,
pp. 1629-1639.
79. Dickert F.L., Hayden O., Bindeus R. et al.
Anal. Bioanal. Chem, 2004, Vol. 378, No 8,
pp. 1929-1934.
80. Hayden O., Haderspock C., Krassnig S. et
al. Analyst, 2006, Vol. 131, No 9,
pp. 1044-1050.
81. Hayden O., Bindeus R., Haderspock C. et
al. Sensors and Actuators B, 2003, Vol. 91,
No 1-3, pp. 316-319.
82. Xu S., Li J., Chen L.J. Mater. Chem, 2011
Vol. 21, pp. 4346-4351.
83. Kane R.S., Takayama S., Ostuni E. et al.
Biomaterials, 1999, Vol. 20, No 23,
pp. 2363-2376.
84. Ferreira GNM, Da-Silva A-C, Tome B.
Trends Biotechnol, 2009,Vol. 27, pp. 689-97.
85. Bossi A., Bonini F., Turner A.P.F. et al.
Biosens. Bioelectron, 2007, Vol. 22, No 6,
pp. 1131-1137.
86. Hillberg A.L., Tabrizian M. IRBM, 2008,
Vol. 29, No 2-3, pp. 89-104.
87. Whitesides G.M., Ostuni E., Takayama S.
et al. Annu. Rev. Biomed. Eng, 2001, Vol. 3,
pp. 335-373.
88. Mujahid A., Dickert F. in book: Carrara
S. Nano-bio-sensing. New York: Springer,
2011. pp. 45-82.
89. Dickert F.L., Hayden O., Bindeus R. et al.
Anal. Bioanal. Chem, 2004, Vol. 378, No 8,
pp. 1929-1934.
90. Dickert F.L., Lieberzeit P., GazdaMiarecka
S. et al. Sensors and Actuators B,
2004, Vol. 100, No 1-2, pp. 112-116.
91. Lieberzeit P., Glanznig G., Jenik M. et al.
Sensors, 2005, Vol. 5, No. 12, pp. 509-518.
92. Dickert FL, Hayden O, Lieberzeit P. et
al. Synth Met, 2003; Vol. 65, No 9,
pp. 138-142.
93. Mujahid A.,Iqbal N.,Afzal A. Biotechnol
Adv, 2013, Vol. 31, No 8, pp. 1435-1447.
Published
2018-02-19
How to Cite
Чернышова, В. Н., Ермолаева, Т. Н., Чеснокова, Е. В., & Бессонов, О. И. (2018). Piezoelectric sensors on the basis of molecularly imprinted polymers. Formation of the recognizing layers on surface of the sensors electrode. Sorbtsionnye I Khromatograficheskie Protsessy, 15(2), 151-167. https://doi.org/10.17308/sorpchrom.2015.15/265