Thermodynamic aspects of adsorption and separation of the enantiomers of some monoterpenes on a capillary column β-DEX 120
Abstract
The object of the research was capillary column WCOT (β-DEX 120) consisting of
polydiphynildimethylsiloxane (PPMS, 35%-phynil, 65%-methyl) with 20% addictive permethylated β-
cyclodextrin (Me-β-CD) and capillary column DB-35ms with pure PPMS. The aim of the work was studying
the thermodynamic characteristics of sorbtion and “host-guest” complexation in the polymeric stationary
phase of β-DEX 120 for monoterpenes C10H16 ((±)-limonene, (±)-α-pinene, (±)-camphene, (±)-menthol).
Retention factors have been observed for some enantiomers of monoterpens (limonene, camphene,
α-pinene, menthol) for two capillary columns (WCOT) with stationary phases consisting of
polydiphenyldimethylsiloxane with additive permethylated β-cyclodextrin (column β-DEX )120 and no
chiral additive (DB-35ms) at a temperature range of 80-1400 by capillary gas chromatography. Energetic and
entropy contribution in retention, thermodynamic parameters of «host-guest» complexation between
monoterpenes and macromolecular in stationary phase of β-DEX 120 were calculated.
Results of the work: by adding in medium polar polymer PPMS 20% mass Me-β-CD, the retention
of monoterpenes grows, as internal energy is increased because of "host-guest" complexation. The ratio of
this increase changes from -8 kJ (limonenes) to -16kJ (menthols). Under the assumption 1:1 stoichiometry of
complexes, we calculated the constant of complexation that increases in the sequence: limonenes-pinenes-
Евдокимова и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 2
289
camphenes-menthols. Еnthalpy of the exothermic process (+)-isomers of hydrocarbons С10Н16 and (-)-
isomers of menthol is higher (in absolute) than in the case of enantiomers with the opposite sign of optical
rotation that provides for DEX 120 moderately expressed enantioselective properties.
In this paper, we submited a thermodynamic analysis of reasons that lead to a reduction of
enantioselectivity with increasing temperature and calculated temperature compensation Tcom at which
optical isomers eluted from the column at the same time. Results of this paper have important value for the
development of supramolecular chemistry and the design of analytical methods of separation and
determination of the enantiomers in natural and synthetic mixtures.
Revealed that adding macrocycle in polymer leads to an increase in retention because of exothermic
contribution in heat of sorption that is due to "host-guest" complexation in stationary phase. Thermodynamic
characteristics of complexation for monoterpenes were calculated in PPMS solution. Constant of
complexation and enthalpy of this process increase in the row limonenes-pinenes-camphenes-menthols.
Enthalpy and entropy contribution in enantioselectivity of column DEX 120 in relation to the optical isomers
of monoterpenes Tcom have calculated, at which this two contribution compensate each other.
Downloads
References
pharmaceutics: past, present and future,
Nat. Rew, 2004, No 3, pp. 1023-1035.
2. Schurig V. Chiral separations using gas
chromatography, Trends in analytical chemistry,
2002, Vol. 21, No 9-10, pp. 647-661.
3. Juvancz Z. The role of cyclodextrins in
chiral selective chromatography, Trends in
analytical chemistry, 2002, Vol. 21, No 5, p
p. 379-388.
4. Shitangkoona A., Yanchindaa J.,
Shiowatana J. Thermodynamic study on the gas
chromatographic separation of the enantiomers
of aromatic alcohols using heptakis(2,3-di-Omethyl-6-O-tret-butyldimethylsilyl)-β-cyclodextrin
as a stationary phase, J. Chromatogr. A,
2004, Vol. 1049, pp. 223-226.
5. Tisse S., Peulon-Agasse V., Cardina P. Et
al. Capillary gas chromatographic properties of
three new mono-esterpermethylated β-cyclodextrin
derivatives, Anal. chim. Acta, 2006,
Vol. 560, pp. 207-217.
6. Guo Wen Chen, Chen Zhang, Wen Jie Li et
al. Synthesis and characterization of β-
cyclodextrin modified hyperbranched
carbosilane as stationary phase for GC, Chinese
Chemical Letters, 2012, Vol. 23, pp. 1259-1262.
7. Volker S. Gas chromatographic
enantioseparation of derivatized -amino acids
on chiral stationary phases-Past and present, J.
Chromatog. B, 2011, Vol. 879, pp. 3122-3140.
8. Onuchak L.A., Platonov V.I., Kuraeva
Yu.G. Thermodynamics of the adsorption of
volatile organic compounds in a binary
polydimethylsiloxane-permethylated β-cyclodextrin
stationary phase, as measured by gas
chromatography, Russian journal of physical
chemistry A, 2013, Vol. 87, No 5, pp. 861-864.
9. Asztemborska M., Nowakowski R.,
Sybilska D. Separation ability and stoichiometry
of cyclodextrin complexes, J. Chromatogr. A,
2000, Vol. 902, pp. 381-387.
10. Onuchak L.A., Kuraeva Yu.G., Platonov
V.I. et al. Gazokhromatograficheskoe
Евдокимова и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 2
300
issledovanie sorbtsionnykh svoistv smeshannoi
polimernoi fazy, soderzhashchei atsetilirovannyi
β-tsiklodekstrin [Gas chromatographic study of
the sorption properties of the polymer mixed
phase comprising an acetylated β-cyclodextrin],
Sorbcionnye i khromatograficheskie processy,
2012, Vol.12, No 3, pp. 345-354.
11. Kuraeva Yu.G., Onuchak L.A., Voronina
E.Yu. et al. Sorbtsionnye i enantioselektivnye
svoistva binarnykh nepodvizhnykh faz na
osnove polidimetilsiloksana i polietilenglikolya
i dobavki geptakis(2,3-O-diatsetil-6-O-tozil)-β-
tsiklodekstrina v usloviyakh gazovoi
khromatografii, Sorbcionnye i
khromatograficheskie processy, 2014, Vol. 14,
No 36, pp. 912-925.
12. Tyukavkina N.A., Baukov Yu.I.
Bioorganicheskaya khimiya. M: Meditsina,
1991, 473 p.
13. Allenmark S. Khromatograficheskoe
opredelenie enantiomerov: Per. s angl. M.: Mir.
1991, 268 p.
14. Onuchak L.A., Kudryashov S.Yu. Using
reverse gas–liquid chromatography to determine
the thermodynamic functions of sorption in a
system of constant volume, Russian Journal of
Physical Chemistry A, 2014, Vol. 88, No 10,
pp. 1785-1789.
15. Asztemborska M., Sybilska D.,
Nowakowski R. et al. Chiral recognition ability
of α-cyclodextrin with regard to some
monoterpenoids under gas-liquid
chromatographic conditions, J. Chromatogr A,
2003, Vol. 1010, pp. 233-242.
16. Skorka M., Asztemborska M., Zukowski
J. Thermodynamic studies of complexation and
enantiorecognition processes of monoterpenoids
by α- and β-cyclodextrin in gas
chromatography, J. Chromatogr. A, 2005, Vol.
1078, pp.136-143.
17. Ma S., Shen S., Haddad N. et al.
Chromatographic and spectroscopic studies on
the chiral recognition of sulfated-β-cyclodextrin
as chiral mobile phase additive enantiomeric
separation of chiral amine, J. Chromatogr. A,
2009, Vol. 1216, pp. 1232-1240.
18. Korol' A.N. Nepodvizhnye fazy v gazozhidkostnoi
khromatografii. Spravochnik. M.:
Khimiya, 1985. 240 p.
19. Caira M.R., Bourne S.A., Dean P.M. et al.
New crystalline forms of permethylated β-
cyclodextrin, Chem. Commun, 2004, pp. 2216-
2217.
20. Gregorio C. Rewiev: A history of
cyclodextrins, Chem. Rew, 2014, No 114 (21),
pp. 10735-10806.
21. Blatov V.A., Shevchenko A.P.,.]
Proserpio D.M. Applied Topological Analysis
of Crystal Structures with the Program Package
ToposPro. Crystal Growth Des, 2014, Vol. 14,
pp. 3576.
22. webbook/nist.gov
23. Stid Dzh.V., Etvud Dzh. L.
Supramolekulyarnaya khimiya. M.: IKTs
«Akademkniga», 2007, 480 p.