Review of the methods of stationary phase classification in gas chromatography

  • Elena A. Zaitceva Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow
Keywords: molecular interaction, adsorption, generalised charge, stationary phase, gas chromatog-raphy, polarity.

Abstract

The article discusses the traditional methods of classification of gas chromatographic stationary phases. Rorschneider’s five-dimensional scheme is based on the alleged independence of five types of energy in five reference samples. The calculation of the scheme is based on a system of equations with five unknowns, which are characteristics of stationary phase polarity. However, there are no substances with only one type of intermolecular interaction. In addition, there are not so many independent types of intermolecular energy (less than five). This implies the fallacy and redundancy of the scheme, since the Rorschneider parameter space has a smaller dimension, and the independent characteristics of the reference substances summarise the contribu-tions of different types of energy. The semi-empirical Abraham’s model of linear solvation energy relationships is more theoretically substantiated. Some of its parameters can be derived theoretically. However, it is even more complicated with regard to calculations than Rorschneider scheme, and the determination of all parame-ters by gas chromatography is impossible. Other methods use one-dimensional characterisation schemes, for example, various polarity parameters or hydrophobic-hydrophilic balance methods, where the stationary phases have one estimated parameter. This is not enough due to the complex nature of intermolecular interac-tions. In this regard, the parameters of the characteristic can coincide in stationary phases with different selec-tivity. Traditional methods have limited predictive power and cannot be equally applied to different experi-ments. However, due to the lack of alternatives, these empirical methods are widely used to assess stationary phase selectivity.
The article proposes a three-parameter characterisation method, which is based on the representation of the energy of intermolecular interaction by the contributions of non-polar, polar forces, and hydrogen bonds. All parameters used in mathematical expressions have physical meaning, are portable, and do not require ad-ditional experiments. The characteristics of the stationary phases can be calculated both from experimental data on chromatographic retention, and a priori, using the structural formula of the stationary phase, if known.

Downloads

Download data is not yet available.

Author Biography

Elena A. Zaitceva, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow

PhD student, Lab of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences (GEOKHI RAS), Moscow. lil-dante@mail.ru

References

Stationary Phases in Gas Chromatography, Rotzsche H. Amsterdam, The Netherlands, Else-vier Science, 1991. рр. 409.

Khimia, Spravochnoe rukovodstvo, Len-ingrad, Khimia, 1975, 574 p.

Rohrschneider L., J.Chomatogr. А, 1965, Vol. 17, pp. 1-12.

Rohrschneider L., J. Chromatogr., 1966, Vol. 22, pp. 6-22.

Rohrschneider L., J. Chromatogr., 1969, Vol. 39, pp. 383-397.

McReynolds W.O., J.Chromatogr. А, 1970, Vol. 8, pp. 337-345.

Skhunmakers P., Optimizaciya selektivnosti v khromatografii, M., Mir, 1989, 399 p.

Evans M.B., Osborn M.J., Chroma-tographia, 1980, Vol. 13, No 3, pp 177-182.

DeBeer J.O., Hendrix A.M., J. Chromatogr., 1982, Vol. 235, pp. 337-349.

Huber J.F.K., Reich G., J. Chromatogr., 1984, Vol. 294, pp. 15-29.

Snyder L.R., J. Chromatogr., 1974. Vol. 92, pp. 223-230.

Klee M.S., Kaiser M.A., Laughlin K.B., J. Chromatogr., 1983, Vol. 279, pp. 681-688.

Juvancz Z., Cserhaiti T., Markides K.E., Bradshaw J.S., Chromatographia., 1994, Vol. 38, pp. 227-231.

Wolf S., Andersson K., J. Chromatogr., 1973, Vol. 80, pp. 43-59.

McCloskey D.M., Hawkes S.Z., J. Chroma-togr. Sci., I975, Vol. 13, рp. 1-5.

Stark T.J., Larson P.A., Dandeneau R.D., J. Chromatogr., 1983, Vol. 279, pp. 31-40.

Marida K.V., Kent Z.T., Bibby Z.M., Mul-tivariate Analysis, Academic Press, London and New York, 1979, 518 p.

Cserhati T., Osapay G., Szogyi M., J. Chro-matogr. Sci., 1989, Vol. 2, pp. 540-544.

Scerhati T., Valko K., J. Biochem. Biophys. Methods., 1990, Vol. 20, pp. 81-95.

Abraham M.H., Ibrahim A., Zissimos A.M., J. Chromatogr. A, 2004, Vol. 1037, pp. 29-47.

Vitha M., Carr P.W., J. Chromatogr. A, 2006, Vol. 1126, pр. 143-194.

Abraham M.H., Chem. Soc. Rev. 1993. Vol. 22, pp. 73-83.

McReynolds W.O., Gas Chromatographic Retention Data. Preston. Technical Abstracts Co. Niles, 1966, 335 p.

McReynolds W.O., J. Chromatogr. Sci., 1970, Vol. 8, pp. 685-691.

Leahy D.E., Morris J.J., Taylor P.J., Wait A.R., J. Chem. Soc., Perkin Trans., 1992, Vol. 2, pp. 705-722.

Fuguet E., Rafols C., Bosch E., Abraham M.H. et al., J. Chromatogr. A, 2002, Vol. 942, pp. 237-248.

Wang A., Tan L.C., Carr P.W., J. Chroma-togr. A, 1999, Vol. 898, pp. 21-37.

Zhao J., Carr P.W., Anal. Chem., 1998, Vol. 70, pp. 3619-3628.

Poole C.F., Poole S.K., J. Chromatogr. A, 2002, Vol. 965, pp. 263-299.

Abraham M.H., Du C.M., Platts J.A., J. Org. Chem., 2000, Vol. 65, pp. 7114-7118.

Lombardo F., Shalaeva M.Y., Tupper K.A., Gao F. et al., J. Med. Chem., 2000, Vol. 43, pp. 2922-2928.

Dias N.C., Poole C.F., J. Planar. Chroma-togr., 2000, Vol. 13, pp. 337-347.

Sandi A., Nagy M., Szepesy L., J. Chroma-togr. A, 2000, Vol. 893, pp. 215-234.

Tan L., Carr P.W., J. Chromatogr. A, 1998, Vol. 799, pp. 1-19.

Ševčik J, Löwentap M.S.H., J. Chromatogr. A, 1981, Vol. 217, pp. 139-150.

Dolgonosov A.M., Rudakov O.B., Surov-tsev I.S., Prudkovskii A.G., Kolonochnaya analiticheskaya khromatografiya kak ob’ekt ma-tematicheskogo modelirovaniya. GEOKHI RAN, Voronezhskii GASU, Voronezh, 2013, 400 p.

Sychev S.N., Sorbtsionnye i khromato-graficheskie protsessy, 2003, Vol. 3, No 4, pp. 446-455.

Dolgonosov A.M., Zaitseva E.A., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 4, pp. 578-590.

Dolgonosov A.M., Zaitseva E.A., Sorbtsionnye i khromatograficheskie protsessy, 2015, Vol. 15, No 3, pp. 321-332.

Dolgonosov A.M., Zaitseva E.A., Vestnik Universiteta Dubna, 2015, No 1, pp. 36-41.

Dolgonosov A.M., Sorbtsionnye i khroma-tograficheskie protsessy, 2015, Vol. 15, No 3, pp. 312-320.

Kaplan I.G., Mezhmolekulyarnye vzai-modejstviya. Fizicheskaya interpretaciya, komp'yuternye raschety i model'nye potencialy, BINOM, Laboratoriya znanij, 2012, 394 p.

Reinganum M., Ann.d.Physik, 1912, Vol.38, pp. 649-668.

Keesom W.H., Phys.Z, 1921, Vol. 22, pp.129-141. 45. Debye P., Phys.Z., 1920, Vol.21, pp.178-187.

Falkenhagen M., Phys.Z., 1922, Vol.23, pp.87-95.

Zaitceva E.A., Dolgonosov A.M., Sorbtsionnye i khromatograficheskie protsessy, 2018, Vol. 18, No 5, pp. 676-689.

Dolgonosov A.M., Rus. Chem. Bul., 2016, Vol. 65, pp. 952-963.

Zaitceva E.A., Dolgonosov A.M., Sorbtsionnye i khromatograficheskie protsessy, 2019, Vol. 19, No 6. pp. 525-541.

Published
2020-05-12
How to Cite
Zaitceva, E. A. (2020). Review of the methods of stationary phase classification in gas chromatography. Sorbtsionnye I Khromatograficheskie Protsessy, 20(2), 175-196. https://doi.org/10.17308/sorpchrom.2020.20/2772