Intermolecular interactions in polyamides involving water

  • Vladimir F. Selemenev Воронежский государственный университет, Воронеж
  • Sergey I. Karpov Voronezh State University, Voronezh
  • Natalya A. Belanova Voronezh State University, Voronezh
  • Lyudmila V. Rudakova Voronezh state medical University named after N.N. Burdenko, Voronezh
  • Victor N. Semenov Воронежский государственный университет, Воронеж
  • Petr O. Kusсhev Voronezh State University, Voronezh
  • Liliia A. Sinyaeva Voronezh State University, Voronezh
Keywords: polyamides, intermolecular interactions, IR spectroscopy, UV spectroscopy.

Abstract

The article specifies the classification of adsorption bands in the IR spectra of polyamides. The study revealed the presence of wagging, scissoring, rocking, and twisting which are characteristic of the structures in amide I, amide II, amide III, amide IV, amide V, and amide VI.
The IR spectroscopy demonstrated the presence of cyclic structures in the polyamide-6 and the su-pramolecular sorbent “Solid water”. The cyclic structures were formed by carbocylic groups: COOHCOOHin neighbouring parallel chains as a result of tautomeric transformations (involving amide groups) of lactam fragments: CH3CH(CH2)2CONH2CH3CHCH2CH2COOOH
The study also demonstrated that polyamides can absorb phenol and its derivatives from aqueous so-lutions. This sorption is quite active since phenol forms stronger hydrogen bonds with С=О groups of amide groups than with -NHCO…Н2О and OHOH2.
The article suggests a modification principle of the triad of interacting components “water - micellar microreactor with surface-active material (SAM) - stationary phase”. The characteristic feature of the super-sorbent “solid water” is that when it is sown in dry soil and watered once, the stationary phase is the micelle modified with SAM. The surface-active material acts as a crystallite and as a liquid phase with laminar struc-ture.
The study demonstrated that in a three-component model, the key role belongs to the coefficient (КMW) of distribution between the micelle and water, as well as the coefficient of distribution (КSM) in the stationary phase (SP). Of much less importance in the three-component model is the coefficient of distribu-tion (КSW) between the stationary phase and water, since КSW is two and more times smaller than КMW.
The study also provided the information about the interaction of the micelles of SAM, which are protolytes that exist in the cation form RCHCOOHNH3+ (рН<рI) in acidic media; in the form of bipolar ions RCHCOONH3+- (рН=рI) in neutral media (with рН=рI, where I is an isoelectric point); and in the form of aniones RCHCOONH2- (рН>рI) in the media with high pH values. In protolytic reactions, they appear with indicators and initiate the transitions of benzol structures into quinoid ones and result in the appearance of conjugation chains with alternating single and multiple bonds.
The article also provides data demonstrating the influence of the distribution coefficients КL in the mobile (MP) and stationary phases (SP) of TLC on the protolysis constants Ка of the separated components and on the рН in micellar reactors.
We believe that polyamides, along with other polymers, will play a significant role as stationary phases in planar chromatography and high-performance liquid chromatography.

Downloads

Download data is not yet available.

Author Biographies

Vladimir F. Selemenev, Воронежский государственный университет, Воронеж

DSc in chemistry, Vo-ronezh State University, Voronezh, Russian Feder-ation, e-mail: common@chem.vsu.ru

Sergey I. Karpov, Voronezh State University, Voronezh

PhD in Chemistry, the sen-ior lecturer of the department of Analytical Chem-istry, Voronezh State University, Voronezh, Rus-sian Federation; e-mail: karsiv@mail.ru

Natalya A. Belanova, Voronezh State University, Voronezh

PhD in Chemistry, the assistant of the department of Analytical Chemis-try, Voronezh State University, Voronezh, Russian Federation; e-mail: belanovana@mail.ru

Lyudmila V. Rudakova, Voronezh state medical University named after N.N. Burdenko, Voronezh

Doctor of Chemistry, Full Professor, Head of the Department of Pharma-ceutical Chemistry, Voronezh state medical Uni-versity named after N.N. Burdenko, Voronezh, Russian Federation; e-mail: vodoley65@mail.ru

Victor N. Semenov, Воронежский государственный университет, Воронеж

Doctor of Chemistry, Full Professor, Head of the Department of General and Inorganic Chemistry, Voronezh State University, Voronezh, Russian Federation; e-mail: se-menov@chem.vsu.ru

Petr O. Kusсhev, Voronezh State University, Voronezh

PhD in Chemistry, the assis-tant of the department of Polymer Science and Col-loid Chemistry, Voronezh State University, Voro-nezh, Russian Federation; e-mail: pe-ter.kuschev@gmail.com

Liliia A. Sinyaeva, Voronezh State University, Voronezh

PhD in Chemistry, the sen-ior engineer, department of Analytical Chemistry, Voronezh State University, Russian Federation; e-mail: liliya.sinyaevavsu@mail.ru

References

Dekhant I., Dants R., Kimmer V., Shmol'ke R. Infrakrasnaya spektroskopiya polimerov, M., Khimiya, 1976, 472 p.

Bekker Yu. Spektroskopiya, M., Tekhnosfera, 2009, 528 p.

Tinoko I., Zauer K., Veng Dzh., Fizi-cheskaya khimiya. Printsipy i primenenie v bio-logicheskikh naukakh, M., Tekhnosfera, 2005, 743 p.

Bull H.B., Brese K., Arch. Biocem. Fnd Bi-ophys, 1968, Vol. 128, pp. 488-496.

Pimentel Dzh., Mak-Klellan, Vodorodnaya svyaz', M., Mir, 1964, 462 p.

Selemenev V.F., Kotova D.L., Oros G.Yu. Zagorodnii A.A., v kn. «100 let khromato-grafii». Mo., Nauka, 2003, pp. 546-569.

Bekker Yu., Khromatografiya. Instrumen-tal'naya analitika: metody khromatografii i ka-pillyarnogo elektroforeza, M., Tekhnosfera, 2009, 472 р.

Uglyanskaya V.A., Chikin G.A., Selemenev V.F., Zav'yalova T.A., Infrakrasnaya spektros-kopiya ioonoobmennykh materialov, Voronezh, VGU, 1989, 208 р.

Zherebtsov N.A., Popova T.N., Artyukhov V.G., Biokhimiya, Voronezh, VGU, 2002, 696р.

Tsundel' G. Gidratatsiya i mezhmole-kulyarnoe vzaimodeistvie. M., Mir, 1972, 404 р.

Selemenev V.F. Diss. d-ra khim. nauk. Voronezh, 1993, 602 р.

Zenishcheva A.V., Semenov V.N., Kuz-netsov V.A., Kushchev P.O., Kondensirovannye

sredy i mezhfaznye granitsy, 2020, No 1, pp. 66-74. DOI: 10.17308/kcmf.2020.22/2530.

Sumina E.G., Shtykov S.N., Tyurina N.V., Osnovy modifitsiruyushchego deistviya pov-erkhnostno-aktivnykh veshchestv v zhidkostnoi khromatografii, Saratov, FAShchRF Saratovskii universitet, 2006, 136 рр.

Sumina E.G., v kn. «Nanoob"ekty i nano-tekhnologii v khimicheskom analize», M., Nau-ka, 2015, рр. 267-305.

Sumina E.G., Shtykov S.N., Tyurina N.V., Osnovy modifitsiruyushchego deistviya pov-erkhnostno-aktivnykh veshchestv v zhidkostnoi khromatografii, Uchebn. posobie. Saratov, Izd-vo Saratovskogo universiteta, 2006, 101 р.

Shtykov S.N., v kn. «Lyuminestsentnyi analiz. Problemy analiticheskoi khimii», M., Nauka, 2015, Vol. 19, рр. 121-146.

Chernova R.K., Doronin S.Yu., Opredele-nie organicheskikh analitov v rastvorakh PAV: ionnye i mitsellyarnye effekty, Saratov, Izd-vo Saratovskogo universiteta, 2017, 1200 p.

Kuznetsov V.A., Kushchev P.O. Patent RF, No 2569377-S1, 2015.

Kuznetsov V.A., Selemenev V.F., Se-menov V.N., Bakalova M.V. Patent RF, No 2574722, 2016.

Sumina E.G., Shtykov S.N., Tyurina N.V., Sorbtsionnye i khromatograficheskie protsessy. 2004, Vol. 4, No 6, рр. 750-756.

Bronshtein I.N., Semendyaev K.A. Spravochnik po matematike dlya inzhenerov i uchashchikhsya VTUzov. Moskva, Nauka, 1886, рр. 11-209.

Published
2020-09-16
How to Cite
Selemenev, V. F., Karpov, S. I., Belanova, N. A., Rudakova, L. V., Semenov, V. N., KusсhevP. O., & Sinyaeva, L. A. (2020). Intermolecular interactions in polyamides involving water. Sorbtsionnye I Khromatograficheskie Protsessy, 20(4), 454-476. https://doi.org/10.17308/sorpchrom.2020.20/2952