Electrosorption of cesium ions on activated carbon OKM-2
Abstract
In this paper the adsorption of cesium ions during the cathodic polarization of activated carbon
OKM-2 obtained by treatment with nitric acid solution has been studied. The studies of cesium
electrosorption were carried out in a cell with separated cathode and anode spaces. It is shown that this
activated carbon is efficient sorbent for removal from aqueous solutions cesium ions. It is revealed that
cathode polarization increases the OKM-2 sorption capacity by 60 percent. The Cs+
sorption value
dependences on the Cs+
ions concentration, the polarization current density and the solution temperature have
been investigated. It is found that electrosorbed Cs
+
ions affect the structural characteristics and thermal
stability of this activated carbon. In the presence of the electrosorbed Cs+
ions the specific surface and the
specific volume of mesopores decreases. The influence of background ions (K+
, Na+
) on the Cs+
electrosorption is detected.
Downloads
References
Perm, Izd-vo Permskogo politekhnicheskogo
instituta, 1969, pp.319-330.
2.Rivera-Utrilla J., Ferro-Garcia M.A., MataArjona
A., Gonzalez-Gomez C., J. Chem. Tech.
Biotechnol, 1984, Vol. 34, pp. 243-250. DOI:
10.1002/jctb.5040340508
3.Akhmedov M.I., Maksin V.N., Ramazanov
A.Sh., Magomedbekov Kh. G., Khimiya i
tekhnologiya vody. 1996, Vol.18, No 1, pp. 53-
59.
4.Giannakopoulou F., Haidouti C.,
Chronopoulou A., Gasparatos D., J. Hazard.
Mat., 2007, Vol. 149, pp. 553-556. DOI:
10.1016/j.jhazmat.2007.06.109
Свешникова и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 4
485
5.Wang T.-H., Li M.-H., Yeh W.-C. et al., J.
Hazard. Mat., 2008, Vol. 160, pp. 638-642.
DOI: 10.1016/j.jhazmat.2008.03.050
6.Borai E.H., Harjula R., Malinen L.,
Paajanen A., J. Hazard. Mat., 2009, Vol. 172,
pp. 416-422. DOI:
10.1016/j.jhazmat.2009.07.033
7.Tsai S.-C., Wang T.-H., Li M.-H. et al., J.
Hazard. Mat., 2009, Vol. 161, pp. 854-861.
DOI: 10.1016/j.jhazmat.2008.04.044
8.Hanafi A., J. At. Mol. Sci., 2010, Vol. 1, pp.
292-300. DOI: 10.4208/jams.100809.112309a
9.Mirkhani R., Roozitalab M.H.,
Khaleghpanah N., Majdabadi A., J. Radioanal.
Nucl. Chem., 2012, Vol. 293, pp. 587-594. DOI:
10.1007/s10967-012-1779-x
10. Caccin M., Giocobbo F., Da Ros M. et
al., J. Radioanal. Nucl. Chem., 2013, Vol. 297,
pp. 9-18. DOI: 10.1007/s10967-012-2305-x
11. Han F., Zhang G.-H., Gu P., J. Radioanal.
Nucl. Chem., 2013, Vol. 295, pp. 369-377. DOI:
10.1007/s10967-012-1854-3
12. El-Zahhar A.A., J. Radioanal. Nucl.
Chem., 2013, Vol. 295, pp. 1693-1701. DOI:
10.1007/s10967-012-2246-4
13. Semenischev V.S., Voronina A.V., Bykov
A.A., J. Radioanal. Nucl. Chem., 2013, Vol.
295, pp. 1753-1757. DOI: 10.1007/s10967-012-
2299-4
14. Solodov N.A. Problemy geologii redkikh
elementov. Moscow, Nauka Publ., 1978, 304 p.
15. Sveshnikova D.A., Gafurov M.M., Ataev
M.B. et al. Khimiya, fizika i tekhnologiya
poverkhnosti, 2013, Vol. 4, pp. 24-36
16. Kirovskaya I.A. Adsorbcionnye processy,
Irkutsk, Izd-vo Irkutskogo un-ta, 1995, 304 p.
17. Sveshnikova D.A., Abakarov A.N.,
Dribinskii A.V. et al.., Russian J. of Physical
Chemistry, 1993, Vol. 67, No7, pp. 1439-1443.
18. Zawadzki J., Chemistry and Physics of
carbon, New York, Marcel Dekker Publ., 1989,
Vol. 21, pp. 147-369.
19. Bansal R.C, Goyal M. Activated Carbon
Adsorption, Taylor &Francis Publ., 2005, 487 p.
20. Terzyk A.P., Rychlicki G., Biniak S.,
Łukaszewicz J.P., J. Colloid Interface Sci.,
2003, Vol. 257, pp.13-30. DOI: 10.1016/S0021-
9797(02)00032-2