A potentiometric multisensory system based on MF-4SC membranes containing silica with a functionalized surface for the determination of sulphanilamide and potassium ions
Abstract
Sulphanilamide preparations are widely used in medicine and veterinary medicine. HPLC, capillary electropho-resis, spectrophotometry, and titrimetry are used for the control of the content of residual amounts of sulphanilamides in food, drinking water, environmental objects, and the analysis of pharmaceuticals. In the same time, the number of sensors for their determination is limited. The aim of the study was the development of potentiometric multisensory system with DP-sensors (DP – Donnan potential) for the determination of anions and zwitter ions of sulphanilamide together with potassium cations in aqueous solutions in a wide pH range. The materials of DP-sensors were perfluoromembranes MF-4SC, containing silica nanoparticles with a surface modified with 3-aminopropyl and 3-(2-imidazolin-1-yl) propyl groups. The sensitivity of DP-sensors based on the studied membranes to zwitter ions and sulphanilamide anions was significant in the concentration range from 1.0∙10-4 to 1.0∙10-2 M. This was due to the protonation of sulphanilamide ani-ons in the membrane caused by the difference in pH of the external and internal solutions. In this case, the presence in the structure of the analyte of a positively charged aromatic amino group and a negatively charged sulphanilamide group ensured the interaction with membrane sulphogroups and amino groups on the dopant surface, respectively. For the or-ganization of the multisensory system, the MF-4SC + 3 wt.% SiO2 (10 mol.% R1) membrane with the highest sensitivity to sulphonamide ions and MF-4SC + 3 wt.% SiO2 membrane were chosen. These membranes paired up provide the smallest correlation between the responses of sensors in the system. The relative error and relative standard deviation of the determination of sulphanilamide ions were 3-9 and 8-16%, potassium ions - 0.4-14 and 3-14%, respectively. Benefits of the developed multisensory system for the determination of sulphanilamide in aqueous solutions in comparison with nitrite titration methodology recommended by the State Pharmacopoeia are rapidity, no need for pH correction and the use of other reagents, as well as the possibility of simultaneous determination of sulphanilamide with alkali metal ions, which are components of pharmaceutical and technological media.
Downloads
References
Dmitrienko S.G., Kochuk E.V., Tolma-cheva V.V., Apyari V.V. et al., Food chemistry, 2015, Vol. 188, pp. 51-56. DOI: 10.1016/j.foodchem.2015.04.123.
He B., Chen W., J. Braz. Chem. Soc., 2016, Vol. 27, No 12, pp. 2216-2225. DOI: 10.5935/0103-5053.20160114.
Peixoto P.S., Tóth I.V., Segundo M.A., Lima J.L.F.C., Int. J. Environ. Anal. Chem., 2016, Vol. 96, No 2, pp. 185-202. DOI: 10.1080/03067319.2015.1128539.
GOST R 54904-2012. Food products, food raw materials. Method for determination of sulfonamides, nitroimidazoles, penicillins, am-phenicols by high performance liquid chroma-tography - mass spectrometry, M., Standartin-form, 2013, 23 p.
FS.2.1.0038.15 Sulfanilamid. Available at: http://pharmacopoeia.ru/fs-2-1-0038-15-sulfanilamid/ (accessed 14 October 2020).
Maggira M., Deliyanni E.A., Samanidou V.F., Molecules, 2019, Vol. 24, No 11, P. 2086. DOI: 10.3390/molecules24112086.
Amelin V.G., Volkova N.M., Timofeev A.A., Tretyakov A.V., J. of Anal. Chem., 2015, Vol. 70, No 9, pp. 1076-1084. DOI: 10.7868/S0044450215090029.
Li Z., Li Y., Qi M., Zhong S. et al., J. Sep. Sci., 2016, Vol. 39, No 19, pp. 3818-3826. DOI: 10.1002/jssc.201600308.
Ji H., Wu Y., Duan Z., Yang F. et al., Electrophoresis, 2017, Vol. 38, No 3-4, pp. 452-459. DOI: 10.1002/elps.201600364.
Errayess S.A., Lahcen A.A., Idrissi L., Marcoaldi C et al., Spectrochim. Acta A Mol. Biomol. Spectrosc, 2017, Vol. 181, pp. 276-285. DOI: 10.1016/j.saa.2017.03.061.
Zamora-Gálvez A., Ait-Lahcen A., Mercante L.A., Morales-Narváez E. et al., Anal.
Chem., 2016, Vol. 88, No 7, pp. 3578-3584. DOI: 10.1021/acs.analchem.5b04092.
He B., Yan S., Int. J. Electrochem. Sci., 2017, Vol. 12, pp. 3001-3011. DOI: 10.20964/2017.04.56.
Yadav S.K., Choubey P.K., Agrawal B., Goyal R.N., Talanta, 2014, Vol. 118, pp. 96-103. DOI: 10.1016/j.talanta.2013.09.061.
Kamel A.H., Almeida S.A., Sales M.G.F., Moreira F.T., Anal Sci., 2009, Vol. 25, No 3, pp. 365. DOI: 10.2116/analsci.25.365.
Soleymanpour A., Rezvani S.A., Mater. Sci. Eng. C, 2016, Vol. 58, pp. 504. DOI: 10.1016/j.msec.2015.08.034.
Kharitonov S.V., Gorelov I.P., Pharm. Chem. J., 2000, Vol. 34, No 12, pp. 673.
Bourais I., Maliki S., Mohammadi H., Amine A., Enzyme Microb. Technol., 2017, Vol. 96, pp. 23-29. DOI: 10.1016/j.enzmictec.2016.09.007.
Safronova E., Parshina A., Kоlganova T., Bobreshova O. et al., J. Electroanal. Chem., 2018, Vol. 816, pp. 21-29. DOI: 10.1016/J.JELECHEM.2018.03.028.
Parshina A.V., Titova T.S., Evdokimova D.D., Bobreshova O.V. et al., Membranes and Mem-brane Technologies, 2019, Vol. 1, No 4, pp. 220-228. DOI: 10.1134/S2517751619040073.
Chienthavorn O., Smith R.M., Chroma-tographia, 1999, Vol. 50, No 7-8, pp. 485-489. DOI: 10.1007/BF02490746.
Mikheev A.G., Safronova E.Y., Yaro-slavtsev A.B., Pet. Chem., 2013, Vol. 53, No 7, pp. 504-510. DOI: 10.1134/ S0965544113070104.
Sarapulova V.V., Klevtsova A.V., Pismenskaya N.D., Membranes and Membrane Technologies, 2020, Vol. 2, No 4, pp. 272-282. DOI: 10.1134/S2517751620040101.