Effect of acid and alkaline treatment on physicalchemical properties of surface of natural glauconite

  • Victoria V. Krupskaya PhD in geological and mineralogical sciences, Laboratory of crystal chemistry of minerals, Institute of geology of ore deposits, petrography, mineralogy and geochemistry of Russian Academy of Sciences, senior research fellow; Moscow, Russian Federation; krupskaya@ruclay.com
  • Liudmila A Novikova PhD in chemical sciences, associate professor, department of chemistry of FSBEI HE «Voronezh State University of Forestry and Technologies named after G.F.Morozov», associate professor; Voronezh, Russian Federation; novikovla@yandex.ru
  • Alexander V. Zhabin PhD in geological and mineralogical sciences, department of general geology and geodynamics, FSBEI HE «Voronezh State University», associate professor, Voronezh, Russian Federation; zhabin01@mail.ru
  • Larisa Ivanovna Belchinskaya full professor in technical sciences, professor, department of chemistry of FSBEI HE «Voronezh State University of Forestry and Technologies named after G.F.Morozov», chairwoman, professor; Voronezh, Russian Federation; chem@vglta.vrn.ru
  • Frank Roessner full professor in chemical sciences, professor, department of industrial chemistry at the Carl von Ossietzky University of Oldenburg, chair, professor; Oldenburg, Germany; frank.roessner@uni-oldenburg.de
Keywords: natural glauconite, acid/alkaline activation, surface and characterization, surface active sites, catalytic conversion of methylbutynol

Abstract

Physical-chemical properties of the structure and the surface of natural (Glt-Nat) and modified by
2M H2SO4 (Glt-Ac); 2M NaOH (Glt-Alk) aluminosilicate samples containing glauconite were studied by
means of XRD, SEM, BET-methods and catalytic conversion of methylbutynol (MBOH). It was observed
that investigated sample was a mixture of mixed layered minerals of illite-smectite (I-S) series, having a I:S
ratio of 50:50 and 80:20. The content of the mixed-layer mineral phase (I:S=50:50) changed as follows: 30-
35% for Glt-Nat; 20-25% for Glt-Ac and 10-15% for Glt-Alk. The elemental composition did not
significantly change after both types of treatment, whereas a twofold increase in specific surface area of GltAc
was observed. The catalytic conversion of MBOH after 10 min of reaction changed in the order: Glt-Ac
(25.4%) > Glt-Nat (23.5%) > Glt-Alk (5.7%). The product yields distribution confirmed presence of both
acid and basic sites on the surface, with the major contribution of acid sites. According to experimental yields
of products formed over acid pathway of the reaction, acidity of unit surface area varied in the order: Glt-Nat
> Glt-Ac > Glt-Alk. The chemical modification of natural sample caused an alteration of its surface
acidity/basicity as observed from the ratio (Ra/b values) of product yields normalized per unit area of surface.
The highest Ra/b was found for Glt-Ac (97.5), which was 3 times higher as for Glt-Nat (33.1) and 7.7 times
that for Glt-Alk (12.6).

Downloads

Download data is not yet available.

References

1.Zhabin A.V., Sharov V.A., Annals of Voronezh State University. Geology, 2005, No 1, pp. 18-32.
2.Zhabin A.V., Savko A.D., Glauconites of Voronezh Anticline, Ocherki po regopnalnoi geologii, Saratov: Nauka, 2008, pp. 48-56.
3.Zhabin A.V., Zolototrubova E.V., Vesntnik VGU, Issue: Geolory, 2008, No 2, pp.222-227.
4.Afanasieva N.I., Zorina S.O., Gubaidulina A.M. et al., Litosphera, 2013, No 2, pp. 65-75.
5.Thompson G., Hower J., Clays and Clay Minerals, 1975, Vol. 23, pp. 289-300.
6.Sakharov B. A., Besson G., Drits V.A. et al., Clay Minerals, 1990, Vol. 25, pp. 419-435.
7.Drits V.A., Ivanovskaya T.A., Sakharov B.A. et al., Lithology and mineral resources, 2010, Vol. 45, No 6, pp. 555-576.
8.Shcherbakova M.Ya ., Nikolaeva I.V., Istomin V.E. Forms of Fe3+ in minerals of glauconite group according to EPR-data and its role for the diagnosis of unaltered and altered varieties of minerals. Collection of scientific works «Crystal chemistry and paragenesis of minerals of sedimentary rocks». Ed. by Zanin
Yu.N.: Novosibirsk, 1975, pp. 6-13.
9.The chemistry of clay minerals, Elsevier Scientific Publishing Group, Amsterdam, 2011, 212 p.
10. Foster M.D. Studies of Celadonite and Glauconite. In GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F: A study of the compositional relations between celadonites and glauconites and an interpretation of the composition of glauconites. United States Government Printing Office, Washington: 1969,
23 p.
11. Gavrilov Yu.O., Shchepetova E.V., Lithology and Mineral Resources, 2000, No 6, pp. 613-623.
12. Schaetzl R., Thompson M.L. Soils. Cambridhe University Press, 2015, 800 p.
13. Ivanovskaya T.A., Zaitseva T.S., Zvyagina B.B., Sakharov B.A., Lithology and Mineral Resources, 2012, No 6, pp. 562-584.
14. Sukharev Yu.I., Kuvykina E.A., Proceedings of the Chelyabinsk Scientific Center, 2000, No 3, pp. 77-81.
15. Grigorieva E.A. Sorption properties of glauconites from Karinskoe deposit. PhD thesis, 2004, 140 p.
16. Franus W., Klinik J., Franus M., Mineralogia Polonica, 2004, Vol. 35, No 2, pp. 53-61.
17. Levchenko M.L., Gubaidulina A.M., Lygina T.Z., Bulletin of the University of Kazan, 2009, No 4, pp. 58-61.
18. Vigdorovich V.I., Tsygankov L.E., Shel’ N.V. et al., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 4, pp. 654-662.
19. Vigdorovich V.I., Tsygankov L.E., Morshchinina I.V., Sorbtsionnye i khromatograficheskie protsessy, 2014. Vol. 14, No 2, pp. 286-295.
20. Vigdorovich V.I., Tsygankov L.E., Shel’ N.V. et al., Sorbtsionnye i khromatograficheskie protsessy, 2015. Vol. 15, No 1, pp. 85-93.
21. Franus M., Bandura L., Fresenius Environmental Bulletin, 2014, Vol. 23, No 3a, pp. 825-839.
22. Grigorieva E.A., Antoshkina E.G., The young scientist, 2012, Vol. 41, No 6, pp. 86-90.
23. Novikova L., Bel’chinskaya L., Roessner F., Russian Journal of Physical Chemistry, 2006, Vol. 80, No 1, pp. S185–S188.
24. Bel’chinskaya L.I., Khodosova N.A., Strel’nikova O.Yu. et al., Protection of Metals and Physical Chemistry of Surfaces, 2015, Vol. 51, No. 5, pp. 779-786.
25. Doušová B., Grygar T., Martaus A. et al., Journal of Colloid and Interface Science, 2006, Vol. 302, pp. 424-431.
26. Belchinskaya L.I., Kozlov K.A., Bondarenko A.V. et al., Russian Journal of Applied Chemistry, 2008, Vol. 81, No 6, pp.926-930.
27. Mitrovich A., Zdujich M., Serb. Chem. Soc., 2013,Vol. 78, No 4, pp. 579-590.
28. Anisimov M.V., Khodosova N.Aa, Belchinskaya L.I., Voronezh Scientific and Technical Gazette, 2014, Vol. 7, No 1, pp. 4-12.
29. Belchinskaya L., Anisimov M., Novikova L., Khodosova N. Features of sorptiondesorption processes on natural alumosilicates treated in pulse magnetic field // Abstracts of II International Conference «Clays, Clay minerals and layered materials», Russia, pp. 139.
30. Kuanyshina G.S., Balgysheva B.D., Asilov A.B., Urakaev F.Kh. Modified glauconites and their sorption properties. Chemistry for Sustainable Development, 2014, 22, pp. 39-44.
31. Sukharev Yu.I., Kuvykina E.A. Use of glauconite from the Ural’s deposit in the processes of water purification from iron (II, III) // Proceedings of the Chelyabinsk Scientific Center, section “Chemistry and Chemical Engineering”, 2002, Vol. 1, No 14, pp. 62-66.
32. Rybkov V.S., Starodubov A.V., Zaharevich A.M. et al., Physics and Chemistry of Materials Processing, 2012, No 6, pp.88-93.
33. Lauron-Pernot, M., Luck, F., Popa, J.M., Applied Catalysis, 1991, Vol. 78, pp. 213-225.
34. Novikova L.A., Roessner F., Belchinskaya L.I. et al., Applied Clay Science, 2014, Vol. 101, pp. 229-236.
35. Guggenheim S., Adams J.M., Bain D.C. et al., Clays and Clay Minerals, 2006, Vol. 54, pp. 761-772.
36. Pushcharovsky D.Yu. Rentgenography of minerals, M .: Geoinformmark, 2000, 292 p.
37. Eberl, D.D., 2003, User's guide to RockJock - A program for determining quantitative mineralogy from powder X-ray diffraction data: U.S. Geological Survey OpenFile Report 2003-78, 47 p.
38. Drits V.A., Sakharov B.A. X-ray diffraction analysis of the mixed-layer minerals. M.: Nauka, 1976, 256 p.
39. Bailey S.W., Brindley G.W., Kodama H. et al., Clays and Clay Minerals, 1979, Vol. 27, No 3, pp. 238-239.
40. Bailey S.W., Brindley G.W., Fanning D.S. et al., Clays and Clay Minerals, 1984, Vol. 32, No 3, pp. 239.
41. Belchinskaya L., Khokhlov V., Novikova L., Jen Ly Tkhi., Journal of Applied Chemistry, Hindawi Publishing Corporation, 2013, pp. 1-9.
http://dx.doi.org/10.1155/2013/789410
42. Lauron-Pernot H. Evaluation of surface acido-basic properties of inorganic-based solids by model catalytic alcohol reaction networks. Catalys. Rev. 2006, 48, pp. 315-361.
43. Alsawalha M., Roessner F., React. Kinet. Catal. Lett., 2008, Vol. 94, pp. 63-69.
44. Johns W.D., McKallip T.E., AAPG Bulletin, 1989, Vol. 73, No 4, pp. 472-482.
Published
2018-02-20
How to Cite
Krupskaya, V. V., Novikova, L. A., Zhabin, A. V., Belchinskaya, L. I., & Roessner, F. (2018). Effect of acid and alkaline treatment on physicalchemical properties of surface of natural glauconite. Sorbtsionnye I Khromatograficheskie Protsessy, 15(5), 730-740. https://doi.org/10.17308/sorpchrom.2015.15/327