Application of magnetic iron oxides modified by phosphonic chelating agent for adsorption of heavy metals
Abstract
This work describes the synthesis of magnetic iron oxide (MIO) – magnetite (Fe3O4) and maghemite
(γ-Fe2O3) chemically modified with one of the most widespread phosphonic chelating agent –
nitrilotris(methylenephosphonic) acid (NTMP) and the sorption of heavy metal (HM) cations (Cu2+, Cd2+ ,
Pb2+ , Ni2+) from aqueous solutions by initial and modified sorbents. MIO were obtained according to
procedures described in the literature and modified by chemisorption of NTMP from the solution
(20 mmol/dm3, pH=5-6, 30 min). Initial and NTMP-modified MIO were characterized by BET method,
FTIR-spectroscopy, thermal analysis and acid-base titration. Sorption of HM cations was studied in the
presence of a supporting electrolyte (KNO3, I=0.1) in the pH range of 1-9 for the initial concentrations of HM
from 0.1 to 5 mmol/dm3
.
For non-electrostatic model of oxide surface stepwise dissociation constants of magnetite OHgroups
(pKa1=4.4; pKa2=10.9) and functional groups of magnetite- attached NTMP (pKa1=7.7; pKa2=10.0;
pKa3=10.7) were defined. For all sorbents with increasing pH sorption of HM cations is increased. Sorption
on unmodified MIO was described by equilibrium: ≡FeOH + M2+ ↔ ≡FeOM+ + H+ with the following
constants (lgKp) for magnetite/maghemite: 3.9 and -0.4 (Pb2+); -0.9/-0.1 (Cu2+); -1.1 (Ni2+); -2.0/-1.3 (Cd2+).
For NTMP-modified MIO there is a significant increase in the stability of the sorbed state, moreover, the
sorption of Cd2+ increases more than that of Cu2
+, and the influence of surface modification on HM sorption
is more pronounced for maghemite compared to magnetite. Possible structure for sorption complexes of
surface-bound phosphonic chelator and metal cation was suggested.The possibility of using the obtained
NTMP-modified MIO for efficient removal of HM from aqueous solutions in the presence of Ca2+/Mg2+ was
shown. Thus, the chemical modification of MIO surface by various phosphonic chelating agents, includingNTMP, is a promising method to obtain new chelating sorbents for removal (concentration, support) of
different metal ions
Downloads
References
2. Tang S.C., Lo I., Water Res., 2013, Vol. 47, рр. 2613-2632. DOI: 10.1016/j.watres.2013.02.039. Available at: htt://www.sciencedirect.com/science/article/pii/S0043135413001437 (accessed 07.08.2015)
3. Faraji M., Yamini Y., Rezaee M., J. Iran. Chem. Soc., 2010, Vol. 7, No 1, pp.1-37. DOI: 10.1007/BF03245856. Available at: http://link.springer.com/article/10.1007/BF0324 5856 (accessed 07.08.2015)
4. Wu W., He Q., Jiang Ch., Nanoscale. Res. Lett., 2008, No 3, pp. 397-415. DOI: 10.1007/s11671-008-9174-9. Available at:
http://www.nanoscalereslett.com/content/3/11/3 97 (accessed 07.08.2015)
5. Hao Y. H., Chen M., Hu Zhong-Bob, J. Hazard. Mater., 2010, Vol. 184, pp. 392–399. DOI:10.1016/j.jhazmat.2010.08.048. Available at:
http://www.sciencedirect.com/science/article/pii /S0304389410010642 (accessed 07.08.2015)
6. Tan Y., Chen M., Hao Y., Chem. Eng. J., 2012, Vol. 191, pp. 104-111. DOI: 10.1016/j.cej.2012.02.075. Available at:
http://www.researchgate.net/publication/236946 311_High_efficient_removal_of_Pb_(II)_by_a mino-functionalized_Fe3O4_magnetic_nanoparticles
(accessed 07.08.2015)
7. Singh D. et al., J. Wat. Pro. Eng., 2014, No 4, pp. 233-241. DOI: 10.1016/j.jwpe.2014.10.005. Available at: http://www.sciencedirect.com/science/article/pii
/S2214714414001196 (accessed 07.08.2015)
8. Liu J., Zhao Z., Jiang G., Environ. Sci. Technol., 2008, Vol. 42, pp. 6949-6954. DOI: 10.1021/es800924c. Available at:
http://pubs.acs.org/doi/abs/10.1021/es800924c (accessed 07.08.2015)
9. Liu Y., Chen M., Hao Y., Chem. Eng. J., 2013, Vol. 218, pp. 46-54. DOI: 10.1016/j.cej.2012.12.027. Available at: http://www.sciencedirect.com/science/article/pii /S1385894712016671 (accessed 07.08.2015)
10. Djatlova N.M., Temkina V.Ja., Popov K.I. Kompleksony i kompleksonaty metallov. M.: Himija, 1988, 544 p.
11. Queffélec C. et al.., Chem. Rev., 2012. Vol. 112 (7), pp. 3777-3807. DOI: 10.1021/cr2004212. Available at:
http://pubs.acs.org/doi/abs/10.1021/cr2004212 (accessed 07.08.2015)
12. Guerrero G. et al., Dalton Trans., 2013, No 42, pp. 12569-12585. DOI: 10.1039/C3DT51193F. Available at:
http://pubs.rsc.org/en/content/articlelanding/201 3/dt/c3dt51193f#!divAbstract (accessed 07.08.2015)
13. Nowack B., Stone A.T., J. Colloid Interf. Sci., 1999, Vol. 214, pp. 20-30. DOI: 10.1006/jcis.1999.6111. Available at:
http://www.sciencedirect.com/science/article/pii /S0021979799961118 (accessed 07.08.2015)
14. Antonova A.S., Kropacheva T.N., Didik M.V., Kornev V.I., Sorbtsionnye khromatograficheskie protsessy, 2014, Vol. 14, No. 2, pp. 65-72.
15. Antonova A.S., Kropacheva T.N., Didik M.V., Kornev V.I., Vestnik Kazanskogo tehnologicheskogo universiteta, 2014, Vol. 17, No 4, pp. 48-52.
16. Das M., Mishra D., Dhak P., Gupta S., Maiti T.K., Basak A., Pramanik P., Small, 2009, № 5(24), pp. 2883-2893. DOI: 10.1002/smll.200901219. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19856326 (accessed 07.08.2015)
17. Mohapatra S., Pramanik P., Colloids Surf., 2009, Vol. 339, pp. 35-42. DOI: 10.1016/j.colsurfa.2009.01.009. Available at:
http://www.sciencedirect.com/science/article/pii /S0927775709000417 (accessed 07.08.2015)
18. Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, 2003, 664р.
19. MVI FR.1.31.2002.00595. M.: NPKF Akvolon, 2002. 57 p.
20. Pagnanelli F., Bornoroni L., Moscardini E., Toro L., Chemosphere, 2006, Vol. 63, No 7, pp. 1063-1073. DOI: 10.1016/j.chemosphere.2005.09.017. Available at: http://www.sciencedirect.com/science/article/pii /S0045653505010945 (accessed 03.10.2015)
21. Stability Constant Computation Programs. Available at: http://www.hyperquad.co.uk (accessed 05.10.2015).
22. Wang S.H., Liu C.S., Shan F.J., Qi G.C., Acta Metall. Sin. (Engl. Lett.), 2008, Vol. 21, No 5, pp. 355-361. DOI: 10.1016/S1006 7191(08)60059-9. Available at: http://www.sciencedirect.com/science/article/pii /S1006719108600599 (accessed 07.08.2015)
23. Zenobi M.C., Rueda E.H., Quim. Nova., 2012, Vol. 35, No 3, pp. 505-509. DOI:10.1590/S0100-40422012000300012. Available
at: http://www.scielo.br/scielo.php?script=sci_artte xt&pid=S0100 40422012000300012&lng=en&nrm=iso&tlng= en (accessed 07.08.2015)