Application of magnetic iron oxides modified by phosphonic chelating agent for adsorption of heavy metals

  • Т. Н. Кропачева Kropacheva Tatyana N.– associated professor, candidate of science (сhemistry), department of Fundamental and Applied Chemistry, Udmurt State University, Izhevsk., e-mail: krop@uni.udm.ru
  • А. С. Антонова Antonova Alexandra S. – post-graduate student, department of Fundamental and Applied Chemistry, Udmurt State University, Izhevsk, email: an.alexandra2010@yandex.ru
  • Ю. Я. Колида Kolida Yuliya Y. – student, department of Fundamental and Applied Chemistry, Udmurt State University, Izhevsk
  • В. И. Корнев Kornev Viktor I. – professor, doctor of science (chemistry), department of Fundamental and Applied Chemistry, Udmurt State University, Izhevsk.
Keywords: magnetite, maghemite, surface modification, chelating agents, NTMP, sorption, heavy metals, surface complexes.

Abstract

This work describes the synthesis of magnetic iron oxide (MIO) – magnetite (Fe3O4) and maghemite
(γ-Fe2O3) chemically modified with one of the most widespread phosphonic chelating agent –
nitrilotris(methylenephosphonic) acid (NTMP) and the sorption of heavy metal (HM) cations (Cu2+, Cd2+ ,
Pb2+ , Ni2+) from aqueous solutions by initial and modified sorbents. MIO were obtained according to
procedures described in the literature and modified by chemisorption of NTMP from the solution
(20 mmol/dm3, pH=5-6, 30 min). Initial and NTMP-modified MIO were characterized by BET method,
FTIR-spectroscopy, thermal analysis and acid-base titration. Sorption of HM cations was studied in the
presence of a supporting electrolyte (KNO3, I=0.1) in the pH range of 1-9 for the initial concentrations of HM
from 0.1 to 5 mmol/dm3
.
For non-electrostatic model of oxide surface stepwise dissociation constants of magnetite OHgroups
(pKa1=4.4; pKa2=10.9) and functional groups of magnetite- attached NTMP (pKa1=7.7; pKa2=10.0;
pKa3=10.7) were defined. For all sorbents with increasing pH sorption of HM cations is increased. Sorption
on unmodified MIO was described by equilibrium: ≡FeOH + M2+ ↔ ≡FeOM+ + H+ with the following
constants (lgKp) for magnetite/maghemite: 3.9 and -0.4 (Pb2+); -0.9/-0.1 (Cu2+); -1.1 (Ni2+); -2.0/-1.3 (Cd2+).
For NTMP-modified MIO there is a significant increase in the stability of the sorbed state, moreover, the
sorption of Cd2+ increases more than that of Cu2
+, and the influence of surface modification on HM sorption
is more pronounced for maghemite compared to magnetite. Possible structure for sorption complexes of
surface-bound phosphonic chelator and metal cation was suggested.The possibility of using the obtained
NTMP-modified MIO for efficient removal of HM from aqueous solutions in the presence of Ca2+/Mg2+ was
shown. Thus, the chemical modification of MIO surface by various phosphonic chelating agents, includingNTMP, is a promising method to obtain new chelating sorbents for removal (concentration, support) of
different metal ions

Downloads

Download data is not yet available.

References

1. Hua M. et al., J. Hazard. Mater., 2012, Vol. 211-212, рр. 317-331. DOI: 10.1016/j.jhazmat.2011.10.016. Available at: http://www.sciencedirect.com/science/article/pii /S0304389411012453 (accessed 07.08.2015)
2. Tang S.C., Lo I., Water Res., 2013, Vol. 47, рр. 2613-2632. DOI: 10.1016/j.watres.2013.02.039. Available at: htt://www.sciencedirect.com/science/article/pii/S0043135413001437 (accessed 07.08.2015)
3. Faraji M., Yamini Y., Rezaee M., J. Iran. Chem. Soc., 2010, Vol. 7, No 1, pp.1-37. DOI: 10.1007/BF03245856. Available at: http://link.springer.com/article/10.1007/BF0324 5856 (accessed 07.08.2015)
4. Wu W., He Q., Jiang Ch., Nanoscale. Res. Lett., 2008, No 3, pp. 397-415. DOI: 10.1007/s11671-008-9174-9. Available at:
http://www.nanoscalereslett.com/content/3/11/3 97 (accessed 07.08.2015)
5. Hao Y. H., Chen M., Hu Zhong-Bob, J. Hazard. Mater., 2010, Vol. 184, pp. 392–399. DOI:10.1016/j.jhazmat.2010.08.048. Available at:
http://www.sciencedirect.com/science/article/pii /S0304389410010642 (accessed 07.08.2015)
6. Tan Y., Chen M., Hao Y., Chem. Eng. J., 2012, Vol. 191, pp. 104-111. DOI: 10.1016/j.cej.2012.02.075. Available at:
http://www.researchgate.net/publication/236946 311_High_efficient_removal_of_Pb_(II)_by_a mino-functionalized_Fe3O4_magnetic_nanoparticles
(accessed 07.08.2015)
7. Singh D. et al., J. Wat. Pro. Eng., 2014, No 4, pp. 233-241. DOI: 10.1016/j.jwpe.2014.10.005. Available at: http://www.sciencedirect.com/science/article/pii
/S2214714414001196 (accessed 07.08.2015)
8. Liu J., Zhao Z., Jiang G., Environ. Sci. Technol., 2008, Vol. 42, pp. 6949-6954. DOI: 10.1021/es800924c. Available at:
http://pubs.acs.org/doi/abs/10.1021/es800924c (accessed 07.08.2015)
9. Liu Y., Chen M., Hao Y., Chem. Eng. J., 2013, Vol. 218, pp. 46-54. DOI: 10.1016/j.cej.2012.12.027. Available at: http://www.sciencedirect.com/science/article/pii /S1385894712016671 (accessed 07.08.2015)
10. Djatlova N.M., Temkina V.Ja., Popov K.I. Kompleksony i kompleksonaty metallov. M.: Himija, 1988, 544 p.
11. Queffélec C. et al.., Chem. Rev., 2012. Vol. 112 (7), pp. 3777-3807. DOI: 10.1021/cr2004212. Available at:
http://pubs.acs.org/doi/abs/10.1021/cr2004212 (accessed 07.08.2015)
12. Guerrero G. et al., Dalton Trans., 2013, No 42, pp. 12569-12585. DOI: 10.1039/C3DT51193F. Available at:
http://pubs.rsc.org/en/content/articlelanding/201 3/dt/c3dt51193f#!divAbstract (accessed 07.08.2015)
13. Nowack B., Stone A.T., J. Colloid Interf. Sci., 1999, Vol. 214, pp. 20-30. DOI: 10.1006/jcis.1999.6111. Available at:
http://www.sciencedirect.com/science/article/pii /S0021979799961118 (accessed 07.08.2015)
14. Antonova A.S., Kropacheva T.N., Didik M.V., Kornev V.I., Sorbtsionnye khromatograficheskie protsessy, 2014, Vol. 14, No. 2, pp. 65-72.
15. Antonova A.S., Kropacheva T.N., Didik M.V., Kornev V.I., Vestnik Kazanskogo tehnologicheskogo universiteta, 2014, Vol. 17, No 4, pp. 48-52.
16. Das M., Mishra D., Dhak P., Gupta S., Maiti T.K., Basak A., Pramanik P., Small, 2009, № 5(24), pp. 2883-2893. DOI: 10.1002/smll.200901219. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19856326 (accessed 07.08.2015)
17. Mohapatra S., Pramanik P., Colloids Surf., 2009, Vol. 339, pp. 35-42. DOI: 10.1016/j.colsurfa.2009.01.009. Available at:
http://www.sciencedirect.com/science/article/pii /S0927775709000417 (accessed 07.08.2015)
18. Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, 2003, 664р.
19. MVI FR.1.31.2002.00595. M.: NPKF Akvolon, 2002. 57 p.
20. Pagnanelli F., Bornoroni L., Moscardini E., Toro L., Chemosphere, 2006, Vol. 63, No 7, pp. 1063-1073. DOI: 10.1016/j.chemosphere.2005.09.017. Available at: http://www.sciencedirect.com/science/article/pii /S0045653505010945 (accessed 03.10.2015)
21. Stability Constant Computation Programs. Available at: http://www.hyperquad.co.uk (accessed 05.10.2015).
22. Wang S.H., Liu C.S., Shan F.J., Qi G.C., Acta Metall. Sin. (Engl. Lett.), 2008, Vol. 21, No 5, pp. 355-361. DOI: 10.1016/S1006­ 7191(08)60059-9. Available at: http://www.sciencedirect.com/science/article/pii /S1006719108600599 (accessed 07.08.2015)
23. Zenobi M.C., Rueda E.H., Quim. Nova., 2012, Vol. 35, No 3, pp. 505-509. DOI:10.1590/S0100-40422012000300012. Available
at: http://www.scielo.br/scielo.php?script=sci_artte xt&pid=S0100­ 40422012000300012&lng=en&nrm=iso&tlng= en (accessed 07.08.2015)
Published
2018-02-20
How to Cite
Кропачева, Т. Н., Антонова, А. С., Колида, Ю. Я., & Корнев, В. И. (2018). Application of magnetic iron oxides modified by phosphonic chelating agent for adsorption of heavy metals. Sorbtsionnye I Khromatograficheskie Protsessy, 15(6), 784-793. https://doi.org/10.17308/sorpchrom.2015.15/332