Transport properties of hybrid perfluorinated membranes MF-4SC volumetrically modified using halloysite nanotubes

  • Д. С. Афонин Afonin Denis S. – senior engineer, Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow
  • А. Н. Филиппов Filippov Anatoly N. – Prof., Department of Higher Mathematics, Dr. Sci. (Physics and Mathematics), Gubkin Russian State University of Oil and Gas, Moscow, e-mail: filippov.a@gubkin.ru
  • Н. А. Кононенко Kononenko Natalia А. – Prof., Dr. Sci. (Chemistry), Department of Physical Chemistry, Kuban State University, Krasnodar
  • С. А. Шкирская Shkirskaya Svetlana А. - Associate Prof., Ph.D. (Chemistry), Department of Physical Chemistry, Kuban State University, Krasnodar
Keywords: perfluorinated membranes, halloysite nanotubes, volumetric modification, diffusion permeability, electric conductivity

Abstract

The transport properties of new hybrid materials for fuel cells and catalysis based on sulfacationic
membrane MF-4SC and halloysite nanotubes are studied. Physico-chemical characteristics of hybrid
membranes were calculated from the experimental data of NaCl solutions diffusion through the membrane
into the water using the Nernst-Planck approach and the least square method. To clarify the results of
calculations we can take into account both the diffusion layers. It is shown that adding halloysite nanotube
into a bulk matrix of the perfluorinated membrane markedly affects their exchange capacity as well as
structural and transport properties of modified membranes.

Downloads

Download data is not yet available.

References

1.Munar А. et al., J. Electrochem. Society, 2010, Vol. 157, No 8, pp. B1186
2.Neburchilov V., Martin J., Wang H., Zhang J., J. Power Sources, 2007, Vol. 169, pp. 221­ -238.
3.Safronova E.Yu., Stenina I.A., Yaroslavtsev A.B., J.inorganic Chemistry, 2010, Vol. 55, No 1, pp. 16-20.
4.Chircov Yu.G., Rostokin V.I., J. Electrochemestry, 2009, Vol. 45, No 2, pp.193­ -202.
5.D’Epifanio A. et al., Chem. Mater., 2010, Vol. 22, pp. 813-821.
6.Pereira F. et al., Chem. Mater., 2008, Vol. 20, pp. 1710-1718.
7.Zabolotsky V.I., Nikonenko V.V. Ions transport in membranes. Moscow, Nauka Publ., 1996, 392 p.
8.Zabolotsky V.I., Nikonenko V.V., J. Membr. Sci., 1993, Vol. 79, pp. 181-198. 9.Filippov A.N., Starov V.M., Kononenko N.A., Berezina N.P., Adv. Colloid Interface Sci., 2008, Vol. 139, pp. 29-44.
10. Filippov A. et al., J. Material Sci and Chem. Engineering, 2015, No 3, pp. 58-65.
11. Berns B.A., Romanovicz V., de Camargo Forte M.M., Carpenter D.E.O.S., Int. J. Chemical, Biomolecular, Metallurgical, Materials Science and Engineering, 2013, Vol. 7, No 2, pp. 704-709.
12. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P., Adv. Colloid Interface Sci., 2008, Vol. 139, pp. 3-28.
13. Filippov A.N., Safronova EYu., Yaroslavtsev A.B., J. Membr. Sci., 2014, Vol. 471, pp. 110–117.
Published
2018-02-20
How to Cite
Афонин, Д. С., Филиппов, А. Н., Кононенко, Н. А., & Шкирская, С. А. (2018). Transport properties of hybrid perfluorinated membranes MF-4SC volumetrically modified using halloysite nanotubes. Sorbtsionnye I Khromatograficheskie Protsessy, 15(6), 867-873. https://doi.org/10.17308/sorpchrom.2015.15/342