Modification of the adsorption properties of montmorillonite by the thermochemical treatment

  • Olga V. - Dorzhieva PhD-student at the Institute of geology of ore deposits, petrography, mineralogy and geochemistry of Russian Academy of Sciences; Geological Institute, Russian Academy of Science, Lead Research Trainee at Laboratory of Physical Methods for the Study of Rock-forming Minerals, junior research fellow; Moscow, Russian Federation; dorzhievaov@gmail.com
  • Sergey V. Zakusin PhD-student of geological faculty at Lomonosov Moscow State University; Laboratory of crystal chemistry of minerals, Institute of geology of ore deposits, petrography, mineralogy and geochemistry of Russian Academy of Sciences, junior research fellow; Moscow, Russian Federation; zakusinsergey@gmail.com
  • Ekaterina A. Tyupina PhD in technical sciences, D. Mendeleyev University of Chemical Technology of Russia, Department of High-Energy Chemistry and Radioecology, associate professor, vice head of department; Moscow, Russian Federation; tk1972@mail.ru
  • Victoria V Krupskaya PhD in geological and mineralogical sciences, Laboratory of crystal chemistry of minerals, Institute of geology of ore deposits, petrography, mineralogy and geochemistry of Russian Academy of Sciences; geological faculty of Lomonosov Moscow State University, senior research fellow; Moscow, Russian Federation; krupskaya@ruclay.com
  • Anatoly P. Zhuhlistov PhD in geological and mineralogical sciences, Laboratory of crystal chemistry of minerals, Institute of geology of ore deposits, petrography, mineralogy and geochemistry of Russian Academy of Sciences, leading research fellow; Moscow, Russian Federation; anzhu@igem.ru
Keywords: montmorillonite, bentonite clays, Tagansky deposit, structure modification, thermochemical treatments, adsorption properties, engineering barriers.

Abstract

The results of the study on changes in the structure and surface properties of montmorillonite from
Tagansky deposit from exposure to nitric acid of varying duration at an elevated temperature are presented in
this work. Treatment with 1M HNO3 solution causes partial leaching of octahedral and interlayer cations
which leads to protonation of internal surfaces and to an increase in microporosity as a result of octahedral
OH-groups protonation and change of octahedral Al coordination. The result of the exposure to acid solutions
is a change of layer charge and interaction between the sheets and layers with each other which in turn leads
to a significant increase of the specific surface area. Also, a reduction in the cation exchange capacity occurs
due to the deposition of amorphous silica from disintegrated tetrahedral sheets on the particle surfaces as well
as a reduction of the layer charge.

Downloads

Download data is not yet available.

References

1. Sellin P., Leopin O.X. Clays and Clay Mineral, 2013. Vol. 61, No 6, pp. 477-498.
2. Laverov N.P. et al. Izmenenie okruzhayushchei sredy i klimata. Izolyatsiya otrabotavshikh yadernykh materialov: geologogeokhimicheskie
osnovy [Changes in the environment and climate. Isolation of spent nuclear materials: geological and geochemical baselines]. Moscow, IGEM RAS, IPE RAN,
2008, Vol. 5, 280 p.
3. Drits V.A., Kossovskaya A.G. Glinistye mineraly: smektity, smeshanosloinye obrazovaniya [Clay minerals: smectites,
interlayered minerals], Moscow, Nauka, 1990, 214 p.
4. Moore D.M., Reynolds R.C. Jr., X-Ray Diffraction and the Identification and Analysis оf Clay Minerals, 2nd ed. Oxford University Press, 1997, 378 p.
5. Rybal'chenko V.D. et al., Glubinnoe zakhoronenie zhidkikh radioaktivnykh otkhodov [Deep-earth burial of liquid radioactive wastes]. Moscow, IzdAT, 1995, 256 p.
6. Zubkov A.A. et al., Materialy Rossiiskoi konferentsii "Fundamental'nye aspekty bezopasnogo zakhoroneniya RAO v geologicheskikh formatsiyakh" [Transformation of the rock-liquid system in the disposal of JSC "SKhK" liquid radioactive wastes of low activity level in sand reservoirs", materials of
the Russian conference "Fundamental aspects of the safe disposal of radioactive wastes in geological formations], October 15-6 2013, Moscow, Publishing group "Granitsa", 2013, pp. 54-56.
7. Bish D.L., Post J.E. American Mineralogist, 1993, Vol. 78, pp. 932-940.
8. Czímerová A., Bujdák J., Dohrmann R., Applied Clay Science, 2006, Vol. 34, pp. 2-13.
9. Viani A.1, Gualtieri A.F., Artioli G., American Mineralogist, 2002, Vol. 87, pp. 966-975.
10. Madejova J., Komadel P., Clays and Clay Minerals, 2001, Vol. 49, No 5, pp. 410-432.
11. Russell J.D., Fraser A.R., in: M.J. Wilson (Ed.). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. London, Chapman & Hall, 1996, pp. 11-67.
12. Komadel P., Clay Minerals, 2003, Vol. 38, 127-138. Available at: http://dx.doi.org/10.1180/0009855033810083.
13. Tyagi B., Chudasama C.D., Jasra R.V., Spectrochimica Acta Part A, 2006, Vol. 64, pp. 273-278.
14. Pentrák M, Czímerová A, Madejová J., Komadel P., Applied Clay Science, 2012; Vol. 55, pp. 100-107. Available at:
http://dx.doi.org/10.1016/j.clay.2011.10.012
15. Finevich V.P., Allert N.A., Karpova T.R., Duplyakin V.K. Rossiiskii khimicheskii zhurnal (Zhurnal Rossiiskogo khimicheskogo obshchestva im. D.I. Mendeleva), 2007, Vol. LI, No 4, pp. 69-74.
16. Dong H., Peacor D.R., Clays and Clay Minerals, 1996, Vol. 44, No 2, pp. 257-275.
17. Shlykov V.G. Rentgenovskii analiz mineral'nogo sostava dispersnykh gruntov. Moscow [X-Ray analysis of the mineral composition of fine-grained soils]. GEOS, 2006. 175 p.
18. Kheok S.C., Lim E.E., J. Am. Oil Chem. Soc., 1982, Vol. 59, pp. 129-131.
19. Morgan D.A. et al., J. Am. Oil Chem. Soc., 1985, Vol. 62, 292-299.
20. Tomić Z.P. et al., Journal of Agricultural Sciences, 2011, Vol. 56, No 1, pp. 25-35. DOI: 10.2298/JAS1101025T.
21. Krupskaya V.V. et al., Novoobrazovannyi smektit kak indikator preobrazovanii geologicheskoi sredy pod vozdeistviem vysokoreaktsionnykh rastvorov,
soprovozhdayushchikh zhidkie radioaktivnykh otkhody [The newly-formed smectite as an indicator of changes of the geological environment under the influence of highly reactive fluids that carry liquid radioactive wastes] Reports of the Academy of Sciences, in print.
22. He H. et al., Clay Minerals, 2002, Vol. 37, pp 337-344.
23. Sergeev E.M., Golodovskaya G.A., Ziangirov R.S. et al., Gruntovedenie (izd. 4) [Soil Science (Vol. 4)]. Moscow, Izd-vo MGU, 1983, 386.p.
24. Osipov V.I., Sokolov V.N. Gliny i ikh svoistva. Sostav, stroenie i formirovanie svoistv [Clays and their properties. The composition, structure and properties formation]. Moscow, GEOS, 2013, 576 p.
25. Rouquerolt J. et al., Pure and Applied Chemistry, 1994, Vol. 66, pp. 1739-1758.
26. Karnaukhov A.P. Adsorbtsiya. Tekstura dispersnykh i poristykh materialov [Adsorption. The texture of dispersive and porous materials]. Novosibirsk, Nauka, 1999, 470 p.
27. IUPAC Manual of Symbols and Terminology Pure and Applied Chemistry. 1972, Vol. 31, 577 p.
Published
2018-02-20
How to Cite
Dorzhieva, O. V.-, Zakusin, S. V., Tyupina, E. A., Krupskaya, V. V., & Zhuhlistov, A. P. (2018). Modification of the adsorption properties of montmorillonite by the thermochemical treatment. Sorbtsionnye I Khromatograficheskie Protsessy, 15(6), 874-883. https://doi.org/10.17308/sorpchrom.2015.15/343