Separation of phenylalanine aqueous salt solutions by electrodialysis using membranes with different mass fractions of sulfonated cation-exchange resin

  • Vera I. Vasil’eva Voronezh State University, Voronezh, Russian Federation
  • Ali M. Saud Voronezh State University, Voronezh, Russian Federation
  • Elmara M. Akberova Voronezh State University, Voronezh
Keywords: separation, demineralization, electrodialysis, phenylalanine, mineral salt, ion exchange membranes, fraction of sulfonated cation-exchange resin

Abstract

The research established the regularities for the separation of phenylalanine aqueous salt solutions by electrodialysis. It also determined the conditions for the effective and selective isolation of the target component by selecting a membrane with the desired properties. The composition of the model solution simulating industrial water in the technology of microbiological synthesis included an aromatic amino acid, phenylalanine (0.05 M), and sodium chloride (0.01 M). Experimental membranes with different mass fractions of sulfonated cation-exchange resin were used. Heterogeneous ion-exchange membranes were obtained by hot rolling of a homogenised mixture of a crushed ion-exchanger and polyethylene. The transport characteristics and features of the transfer of components of different nature through the experimental membranes were studied in a galvanostatic mode using a seven-section electrodialyser which was horizontally oriented.  It was established that the content of the ion exchanger in the membrane influences the features of the transport of mineral salt and amino acid ions, the value of the separation factor, and the degree of solutions demineralization.

 It was shown that the change in the content of the sulfonated cation-exchanger in the membranes from 45 to 70 wt.% during the electrodialysis of a mixed solution of an amino acid and a mineral salt makes it possible to increase the rate of mass transfer of a mineral ion by 1.5 times. For all experimental membranes, the separation factor dependences are characterised by extrema corresponding to the interval exceeding the limiting diffusion current ilim by 2-3 times. The maximum separation efficiency was set for a cation exchange membrane with a 70% content of resin. It was found that when the limiting diffusion current was exceeded by a factor of 2 while the content of resin in the membrane increased, the separation factor increased by 1.5 times. Additionally, the degree of demineralization of the solution for the membrane with the maximum content of the ion exchanger was 40-60%. The possibility of almost complete demineralization of the solution for the membrane with a content of resin of 70 wt.% was established when the maximum current was exceeded by 6 times.

The study revealed the role of electroconvection in the increase in the loss of the target product of the amino acid with overlimiting current modes of electrodialysis. It was shown that the main reason for the increase in the transfer of amino acids through the sulphonated cation-exchange membrane in intense current modes is the electroconvective mixing of the solution at the interface, which negatively affects the process of water dissociation and destroys the barrier effect of the near-membrane layers of the solution with a high pH value.

The research established the possibility of deep demineralization of phenylalanine aqueous salt solution with a loss of the target product of no more than 0.2% using a membrane with a mass fraction of a sulfonated cation-exchange resin of 70 wt.% in intense current modes.

Downloads

Download data is not yet available.

Author Biographies

Vera I. Vasil’eva , Voronezh State University, Voronezh, Russian Federation

prof., grand Ph.D (chemistry), department of analytical chemistry, Voronezh State University, Voronezh

Ali M. Saud , Voronezh State University, Voronezh, Russian Federation

the postgraduate student, department of analytical chemistry, Voronezh State University, Voronezh

Elmara M. Akberova , Voronezh State University, Voronezh

Ph.D. (chemistry), leading engineer, department of analytical chemistry, Voronezh State University, Voronezh

References

Bykov V.A., Krylov I.A., Manakov M.N. et al. Mikrobiologicheskoe proizvodstvo biologicheski aktivnyh veshhestv i preparatov. Moscow, Vysshaja shkola, 1987, 143 p.

Vasil’eva V., Goleva E., Pismenskaya N., Kozmai A. et al., Sep. Purif. Technol., 2019, Vol. 210, pp. 48-59. DOI: https://doi.org/10.1016/j.seppur.2018.07.065

Kozmai A., Goleva E., Vasil'eva V., Nikonenko V. et al., Membranes, 2019, Vol. 9, pp. 171-186. DOI: https://doi.org/10.3390/membranes9120171

Vasil'eva V.I., Saud A.M., Akberova E.M., Membr. Membr. Technol., 2021, Vol. 3, No 2, pp. 98-106. https://doi.org/10.1134/S2517751621020074

Grib H., Belhocine D., Lounici H., Pauss A. et al., J. Appl. Electrochem., 2000, Vol. 30, pp. 259-262. DOI: https://doi.org/10.1023/A:1003990031853

Choi J., Oh S., Moon S., J. Chem. Technol. Biotechnol., 2002, Vol. 77, pp. 785-792. DOI: https://doi.org/10.1002/jctb.638

Aghajanyan A.E., Hambardzumyan A.A., Vardanyan A.A., Saghiyan A.S., Desalination, 2008, Vol. 228, pp. 237-244. DOI: https://doi.org/10.1016/j.desal.2007.10.012

Eliseeva T.V., Kharina A.Y., Voro-nyuk I.V. et al., Sorbtsionnye I Khromato-graficheskiye Protsessy, 2013, Vol. 13, No 5, pp. 647-654.

Sun Z., Gao X., Zhang Y., Gao C., Desalin. Water Treat., 2016, Vol. 57, pp. 22304-22310. DOI: https://doi.org/10.1080/19443994.2015.1137082

Kharina A.Y., Eliseeva T.V., Kondens. Sredy Mezhfaznye Granitsy, 2017, Vol. 19, No 1, pp. 126-132.

Mondal S., Griffiths I.M., Ramon G.Z., J. Membr. Sci., 2019, Vol. 588, Art. No. 117166. DOI: https://doi.org/10.1016/j.memsci.2019.06.006

Stenina I., Golubenko D., Nikonen-ko V., Yaroslavtsev A., Int. J. Mol. Sci., 2020, Vol. 21, Art. No. 5517. DOI: https://doi.org/10.3390/ijms21155517

Kovalev N.V., Karpenko T.V., Shel'deshov N.V., Zabolotskiy V.I., Membr. Membr. Technol., 2020, Vol. 2, No 6, pp. 391-398. https://doi.org/10.1134/S2517751620060050

Ahmad M., Qaiser A.A., Huda N.U., Saeed A., RSC Adv., 2020, Vol. 56010, pp. 3029. DOI: https://doi.org/10.1039/C9RA06178A

Zabolotskiy V.I., But A.Yu., Vasil'eva V.I., Akberova E.M., et al., J. Membr. Sci., 2017, Vol. 526, pp. 60-72. DOI: https://doi.org/10.1016/j.memsci.2016.12.028

Vasil'eva V.I., Zhiltsova A.V., Akberova E.M., Fataeva A.I., Kondens. Sredy Mezhfaznye Granitsy, 2014, Vol. 16, No 3, pp. 257-261.

Porozhnyy M.V., Shkirskaya S.A., Butylskii D.Y., Dotsenko V.V. et al., Electrochim. Acta, 2021, Vol. 370, Art. No. 137689. DOI: https://doi.org/10.1016/j.electacta.2020.137689

Vasil'eva V.I., Akberova E.M., Zabolotskii V.I., Russ. J. Electrochem., 2017, Vol. 53, No 4, pp. 398-410. DOI: https://doi.org/10.1134/S1023193517040127

Akberova E.M., Vasil’eva V.I., Zab-olotsky V.I., Novak L., J. Membr. Sci., 2018, Vol. 566, pp. 317-328. DOI: https://doi.org/10.1016/j.memsci.2018.08.042

Rosenberg N.W., Tirrell C.E., Ind. Eng. Chem. 1957, Vol. 49, pp. 780-784. DOI: https://doi.org/10.1021/ie50568a047

Isaev N.I., Shaposhnik V.A. Sintez i svoistva ionoobmennykh materialov. Mos-cow, Nauka, 1968, pp. 256-261.

Kotova D.L., Krysanova T.A., Eliseeva T.V. Spektrofotometricheskoe opredelenie aminokislot v vodnyh rastvorah. Voronezh, Voronezh State University, 2004, 55 p.

Saud A.M., Smagin M.A., Vasil’eva V.I., Industrial laboratory. Diagnostics of materials, 2020, Vol. 86, pp. 13-8.

Hwang S. T., Kammermeyer K. Membranes in separations. New York, John Wiley & Sons, 1975, 526 p.

Shaposhnik V.A., Eliseeva T.V., Sel-emenov V.F., Russ. J. Electrochem., 1993, Vol. 29, № 6, pp. 794-795.

Vasil’eva V. I., Eliseeva T. V., Russ. J. Electrochem., 2000, Vol. 36, No 11, pp. 30-35. DOI: https://doi.org/10.1007/BF02757792

Elisseeva T.V., Shaposhnik V.A., Luschik I.G., Desalination, 2002, Vol. 149, pp. 405-409. DOI: https://doi.org/10.1016/S0011-9164(02)00763-4

Eliseeva T.V., Shaposhnik V.A., Russ J Electrochem., 2000, Vol. 36, pp. 64-67. DOI: https://doi.org/10.1007/BF02757798

Zabolotskii V.I., Shel'deshov N.V., Gnusin N.P., Uspekhi khimii, 1988, Vol. 57, No. 8, pp. 1403-1414.

Zabolotskii V.I., Bugakov V.V., Sharafan M.V., Chermit R.K., Russ. J. Elec-trochem., 2012, Vol. 48, No 6, pp. 650-659. DOI: https://doi.org/10.1134/S1023193512060158

Vasil'eva V., Zabolotsky V., Shaposhnik V., Zhiltsova A. et al., Desalin. Water Treat., 2010, Vol. 14, pp. 214-219. DOI: https://doi.org/10.5004/dwt.2010.1030

Belova E., Lopatkova G., Pismen-skaya N., Nikonenko V. et al., Desalination, 2006,Vol. 199, pp. 59-61. DOI: https://doi.org/10.1016/j.desal.2006.03.142

Zyryanova S., Mareev S., Gil V. et al., Int. J. Mol. Sci., 2020, Vol. 21, Art. No. 973. DOI: https://doi.org/10.3390/ijms21030973

Akberova E. M., Vasil'eva V. I., Electrochem. Commun., 2020, Vol. 111, Art. No. 106659. DOI:https://doi.org/10.1016/j.elecom.2020.106659

Published
2021-09-26
How to Cite
Vasil’eva , V. I., Saud , A. M., & Akberova , E. M. (2021). Separation of phenylalanine aqueous salt solutions by electrodialysis using membranes with different mass fractions of sulfonated cation-exchange resin. Sorbtsionnye I Khromatograficheskie Protsessy, 21(4), 498-509. https://doi.org/10.17308/sorpchrom.2021.21/3634