Separation of phenylalanine aqueous salt solutions by electrodialysis using membranes with different mass fractions of sulfonated cation-exchange resin
Abstract
The research established the regularities for the separation of phenylalanine aqueous salt solutions by electrodialysis. It also determined the conditions for the effective and selective isolation of the target component by selecting a membrane with the desired properties. The composition of the model solution simulating industrial water in the technology of microbiological synthesis included an aromatic amino acid, phenylalanine (0.05 M), and sodium chloride (0.01 M). Experimental membranes with different mass fractions of sulfonated cation-exchange resin were used. Heterogeneous ion-exchange membranes were obtained by hot rolling of a homogenised mixture of a crushed ion-exchanger and polyethylene. The transport characteristics and features of the transfer of components of different nature through the experimental membranes were studied in a galvanostatic mode using a seven-section electrodialyser which was horizontally oriented. It was established that the content of the ion exchanger in the membrane influences the features of the transport of mineral salt and amino acid ions, the value of the separation factor, and the degree of solutions demineralization.
It was shown that the change in the content of the sulfonated cation-exchanger in the membranes from 45 to 70 wt.% during the electrodialysis of a mixed solution of an amino acid and a mineral salt makes it possible to increase the rate of mass transfer of a mineral ion by 1.5 times. For all experimental membranes, the separation factor dependences are characterised by extrema corresponding to the interval exceeding the limiting diffusion current ilim by 2-3 times. The maximum separation efficiency was set for a cation exchange membrane with a 70% content of resin. It was found that when the limiting diffusion current was exceeded by a factor of 2 while the content of resin in the membrane increased, the separation factor increased by 1.5 times. Additionally, the degree of demineralization of the solution for the membrane with the maximum content of the ion exchanger was 40-60%. The possibility of almost complete demineralization of the solution for the membrane with a content of resin of 70 wt.% was established when the maximum current was exceeded by 6 times.
The study revealed the role of electroconvection in the increase in the loss of the target product of the amino acid with overlimiting current modes of electrodialysis. It was shown that the main reason for the increase in the transfer of amino acids through the sulphonated cation-exchange membrane in intense current modes is the electroconvective mixing of the solution at the interface, which negatively affects the process of water dissociation and destroys the barrier effect of the near-membrane layers of the solution with a high pH value.
The research established the possibility of deep demineralization of phenylalanine aqueous salt solution with a loss of the target product of no more than 0.2% using a membrane with a mass fraction of a sulfonated cation-exchange resin of 70 wt.% in intense current modes.
Downloads
References
Bykov V.A., Krylov I.A., Manakov M.N. et al. Mikrobiologicheskoe proizvodstvo biologicheski aktivnyh veshhestv i preparatov. Moscow, Vysshaja shkola, 1987, 143 p.
Vasil’eva V., Goleva E., Pismenskaya N., Kozmai A. et al., Sep. Purif. Technol., 2019, Vol. 210, pp. 48-59. DOI: https://doi.org/10.1016/j.seppur.2018.07.065
Kozmai A., Goleva E., Vasil'eva V., Nikonenko V. et al., Membranes, 2019, Vol. 9, pp. 171-186. DOI: https://doi.org/10.3390/membranes9120171
Vasil'eva V.I., Saud A.M., Akberova E.M., Membr. Membr. Technol., 2021, Vol. 3, No 2, pp. 98-106. https://doi.org/10.1134/S2517751621020074
Grib H., Belhocine D., Lounici H., Pauss A. et al., J. Appl. Electrochem., 2000, Vol. 30, pp. 259-262. DOI: https://doi.org/10.1023/A:1003990031853
Choi J., Oh S., Moon S., J. Chem. Technol. Biotechnol., 2002, Vol. 77, pp. 785-792. DOI: https://doi.org/10.1002/jctb.638
Aghajanyan A.E., Hambardzumyan A.A., Vardanyan A.A., Saghiyan A.S., Desalination, 2008, Vol. 228, pp. 237-244. DOI: https://doi.org/10.1016/j.desal.2007.10.012
Eliseeva T.V., Kharina A.Y., Voro-nyuk I.V. et al., Sorbtsionnye I Khromato-graficheskiye Protsessy, 2013, Vol. 13, No 5, pp. 647-654.
Sun Z., Gao X., Zhang Y., Gao C., Desalin. Water Treat., 2016, Vol. 57, pp. 22304-22310. DOI: https://doi.org/10.1080/19443994.2015.1137082
Kharina A.Y., Eliseeva T.V., Kondens. Sredy Mezhfaznye Granitsy, 2017, Vol. 19, No 1, pp. 126-132.
Mondal S., Griffiths I.M., Ramon G.Z., J. Membr. Sci., 2019, Vol. 588, Art. No. 117166. DOI: https://doi.org/10.1016/j.memsci.2019.06.006
Stenina I., Golubenko D., Nikonen-ko V., Yaroslavtsev A., Int. J. Mol. Sci., 2020, Vol. 21, Art. No. 5517. DOI: https://doi.org/10.3390/ijms21155517
Kovalev N.V., Karpenko T.V., Shel'deshov N.V., Zabolotskiy V.I., Membr. Membr. Technol., 2020, Vol. 2, No 6, pp. 391-398. https://doi.org/10.1134/S2517751620060050
Ahmad M., Qaiser A.A., Huda N.U., Saeed A., RSC Adv., 2020, Vol. 56010, pp. 3029. DOI: https://doi.org/10.1039/C9RA06178A
Zabolotskiy V.I., But A.Yu., Vasil'eva V.I., Akberova E.M., et al., J. Membr. Sci., 2017, Vol. 526, pp. 60-72. DOI: https://doi.org/10.1016/j.memsci.2016.12.028
Vasil'eva V.I., Zhiltsova A.V., Akberova E.M., Fataeva A.I., Kondens. Sredy Mezhfaznye Granitsy, 2014, Vol. 16, No 3, pp. 257-261.
Porozhnyy M.V., Shkirskaya S.A., Butylskii D.Y., Dotsenko V.V. et al., Electrochim. Acta, 2021, Vol. 370, Art. No. 137689. DOI: https://doi.org/10.1016/j.electacta.2020.137689
Vasil'eva V.I., Akberova E.M., Zabolotskii V.I., Russ. J. Electrochem., 2017, Vol. 53, No 4, pp. 398-410. DOI: https://doi.org/10.1134/S1023193517040127
Akberova E.M., Vasil’eva V.I., Zab-olotsky V.I., Novak L., J. Membr. Sci., 2018, Vol. 566, pp. 317-328. DOI: https://doi.org/10.1016/j.memsci.2018.08.042
Rosenberg N.W., Tirrell C.E., Ind. Eng. Chem. 1957, Vol. 49, pp. 780-784. DOI: https://doi.org/10.1021/ie50568a047
Isaev N.I., Shaposhnik V.A. Sintez i svoistva ionoobmennykh materialov. Mos-cow, Nauka, 1968, pp. 256-261.
Kotova D.L., Krysanova T.A., Eliseeva T.V. Spektrofotometricheskoe opredelenie aminokislot v vodnyh rastvorah. Voronezh, Voronezh State University, 2004, 55 p.
Saud A.M., Smagin M.A., Vasil’eva V.I., Industrial laboratory. Diagnostics of materials, 2020, Vol. 86, pp. 13-8.
Hwang S. T., Kammermeyer K. Membranes in separations. New York, John Wiley & Sons, 1975, 526 p.
Shaposhnik V.A., Eliseeva T.V., Sel-emenov V.F., Russ. J. Electrochem., 1993, Vol. 29, № 6, pp. 794-795.
Vasil’eva V. I., Eliseeva T. V., Russ. J. Electrochem., 2000, Vol. 36, No 11, pp. 30-35. DOI: https://doi.org/10.1007/BF02757792
Elisseeva T.V., Shaposhnik V.A., Luschik I.G., Desalination, 2002, Vol. 149, pp. 405-409. DOI: https://doi.org/10.1016/S0011-9164(02)00763-4
Eliseeva T.V., Shaposhnik V.A., Russ J Electrochem., 2000, Vol. 36, pp. 64-67. DOI: https://doi.org/10.1007/BF02757798
Zabolotskii V.I., Shel'deshov N.V., Gnusin N.P., Uspekhi khimii, 1988, Vol. 57, No. 8, pp. 1403-1414.
Zabolotskii V.I., Bugakov V.V., Sharafan M.V., Chermit R.K., Russ. J. Elec-trochem., 2012, Vol. 48, No 6, pp. 650-659. DOI: https://doi.org/10.1134/S1023193512060158
Vasil'eva V., Zabolotsky V., Shaposhnik V., Zhiltsova A. et al., Desalin. Water Treat., 2010, Vol. 14, pp. 214-219. DOI: https://doi.org/10.5004/dwt.2010.1030
Belova E., Lopatkova G., Pismen-skaya N., Nikonenko V. et al., Desalination, 2006,Vol. 199, pp. 59-61. DOI: https://doi.org/10.1016/j.desal.2006.03.142
Zyryanova S., Mareev S., Gil V. et al., Int. J. Mol. Sci., 2020, Vol. 21, Art. No. 973. DOI: https://doi.org/10.3390/ijms21030973
Akberova E. M., Vasil'eva V. I., Electrochem. Commun., 2020, Vol. 111, Art. No. 106659. DOI:https://doi.org/10.1016/j.elecom.2020.106659