Nanosize effects of metal-ion exchanger composites during electrochemical reduction of oxygen dissolved in water

  • Tamara A. Kravchenko Voronezh State University, Voronezh
  • Ekaterina A. Shevtsova Voronezh State University, Voronezh, Russian Federation
  • Vyacheslav A. Krysanov Voronezh State University, Voronezh, Russian Federation
Keywords: nanosize effects, metal nanoparticles, ion-exchange polymer matrices, electrochemical reduction of oxygen

Abstract

In this study, we obtained nanocomposites containing metal (Cu) nanoparticles in a macroporous sulphonic cation-exchange matrix. We studied the processes of bulk chemical deposition of metal in a new-generation ion-exchange matrix (Lewatit K2620) with a monoporous structure. We obtained metal particles with different nanometre sizes and composition on its surface and in its pores.

X-ray diffraction showed that the deposited metal particles are mostly nanoscale. Depending on the type of the reducing agent (sodium dithionite, sodium borohydride) and the precursor (sodium hydroxide, aminoacetic acid), the average particle size of the deposited metal was 10 to 32 nm. Microscopic studies showed the formation of associates of basic particles 100-300 nm in size. The metal nanoparticle content (metal capacity of the nanocomposite) was dependent on the number of deposition cycles and varied from 0.3 to
9.4 meq/cm3 for 1-10 cycles.  With an increase in the number of deposition cycles, the particle size slightly increased (1.5-2 times).

We studied the absorption of molecular oxygen from water on cathode-polarised granular layers of copper-sulphonic cation exchanger nanocomposites. As the cathodic current was applied, the amount of absorbed oxygen increased. The electrochemical component was a certain proportion of this amount: the loss of oxygen was due to both its reduction by the current and the chemical oxidation of the metal nanoparticles. It was experimentally shown that the oxygen concentration at the output of the granular layer and the amount of absorbed oxygen were dependent on the size factors. These factors can be used to intensify the oxygen reduction process under electrochemical polarisation. A reduction in the particle size of the metal component naturally corresponds to an increase in the rate of the process as a whole. The rate of the process increases as a function of the number of metal deposition cycles. It exhibits a percolation effect that determines the threshold level of metal component content in the nanocomposite at which the process becomes as efficient as possible.

Under electrochemical polarisation, the process is displaced from the intra-diffusion chemical limiting region to the outer-diffusion region, which provides a higher rate. In the region of prelimiting currents, the process of oxygen electro-reduction is complicated by internal diffusion and chemical reaction, and is therefore naturally dependent on the size factors. 

Downloads

Download data is not yet available.

Author Biographies

Tamara A. Kravchenko , Voronezh State University, Voronezh

PHD of chemistry, prof. Physical Chemistry Department, Voronezh State University, Voronezh

Ekaterina A. Shevtsova , Voronezh State University, Voronezh, Russian Federation

 magister of Physical Chemistry Department, Voronezh State University, Voronezh

Vyacheslav A. Krysanov , Voronezh State University, Voronezh, Russian Federation

PHD Physical Chemistry Department, Voronezh State University, Voronezh

References

Pul Ch., Ouens F. Nanotekhnologii. 2-e izd. M.: Tekhnosfera, 2006, 336 p.

Sergeev G.B. Nanohimiya. 2-e izd. M., MGU, 2007, 336 p.

Yaroslavcev A.B., Maksimovskij S.N., Hosokava M. et al., Spravochnik po tekhnologii nanochastic, M., Nauchnyj mir, 2013, 730 p.

Petrij O.A., Uspekhi himii, 2015, Vol. 84, No 2, pp. 159-193.

Ting Ch.Ch., Liu Ch. Hs., Tai Ch. Y. et al., Journal of Power Sources, 2015, No 280, pp. 166-172.

Reske R., Mistry H., Behafarid F. et al., Journal of American Chemical Society, 2014, No 136, pp. 6978-6986.

Tripachev O.V., Tarasevich M.R., Zhur-nal fizicheskoj himii, 2013, Vol. 87, No 5, pp. 835-841.

Nesselberger M., Roefzaad M., Hamou R.F. et al., Nature Materials, 2013, No 12, pp. 919-924.

Proch S., Wirth M., White H.S. et al., Journal of American Chemical Society, 2013, No 135, pp. 3073-3086.

Chernavskij P.A., Pankina G.V., Ivancov M.I. et al., Zhurnal fizicheskoj himii, 2013, Vol. 87, No 8, pp. 1356-1360.

Leontyev I.N., Belenov S.V., Guterman V.E. et al., Journal of Physical Chemistry, 2011, No 115, pp. 5429-5434.

Pomogajlo A.D., Rozenberg A.S., Ufly-and I.E., Nanochasticy metallov v polimerah, M., Himiya, 2000, 672 p.

Krylov O.V., Geterogennyj kataliz, M., IKC «Akademkniga», 2004, 679 p.

Safronova E.Yu., Yaroslavtsev A.B., Petroleum Chemistry, 2016, Vol. 56, No 4, pp. 281-293.

Povolockaya A.V, Povolockij A.V., Man'shina A.A., Uspekhi himii, 2015, Vol. 84, No 6, pp. 579-600.

Grzelczak M., Vermant J., Furst E.M. et.al., ACS Nano. Nanocomposites: Synthe-sis, Characterization and Applications, N.Y., Nova Sc. Publ., 2010, pp. 3591-3605.

Yaroslavcev A.B., Rossijskie nano-tekhnologii, 2012, Vol. 7, No 9-10, pp. 8-18.

Shel'deshov N.V., Mel'nikov S.S., Solov'eva T.T. et al., Elektrohimiya, 2011, Vol. 47, No 2, pp. 213-221.

Al'tshuler G.N., Sapozhnikova L.A., Malyshenko N.V. et al., Zhurnal fizicheskoj himii, 2011, Vol. 85, No 4, pp. 743-747.

Gurskiy V., Kharitonova E., Ion transport in organic and inorganic mem-branes, Krasnodar, 2010, pp. 62.

Vol'f I.V., Sinyakova M.A., Sorbtsionnye i khromatograficheskie protsessy, 2005, Vol. 5, No 1, pp. 23-31.

Vosmerikova L.N., Velichkina L.M., Korobicyna L.L. et al., Zhurnal prikladnoj himii, 2000, Vol. 73, No 9, pp. 1477-1481.

Rollins H.W., Lin F., Johnson J. et.al., Langmur, 2000, Vol. 16, No 21, pp. 8031-8036.

Razumov V.F., Baryshnikov B.V., Razumov M.V. Doklady Akademii nauk, 1996, Vol. 348, No 1, pp. 62-65.

Melihov I.V. Fiziko-khimicheskaya evolyuciya tverdogo veshchestva, 2-e izd., M., BINOM, Laboratoriya znanij, 2012, 309 p.

Kalinichev A.I., Advances in Nanopar-ticles, 2013, No 2, pp. 191-203.

Hudyakova S.N., Tokmachev M.G., Fe-rapontov N.B., Zhurnal fizicheskoj himii, 2013, Vol. 87, No 7, pp. 1243-1248.

Al'tshuler O.G., Malyshenko N.V., Shkurenko G.Yu. et al., Teoreticheskie osno-vy himicheskoj tekhnologii, 2009, Vol. 43, No 1, pp. 47-53.

Shabatina T.I., Mascetti Dzh., Ogden Dzh. et al., Uspekhi himii, 2007, Vol. 76, No 12, pp. 1202-1218.

Rostovshchikova T.N., Smirnov V.V., Kozhevin V.M. et al., Rossijskie nano-tekhnologii, 2007, Vol. 2, No 1-2, pp. 47-60.

Volkov V.V., Kravchenko T.A., Rol-dughin V.I., Chemical Review, 2013, Vol. 82, No 5, pp. 465-482. DOI: 10.1070/RC2013v082n05ABEH004325

Kravchenko T.A., Khorolskaya S.V., Polyanskiy L.N. et al., Nanocomposites: Syn-thesis, Characterization and Application, N.Y. Nova Science Publishers, 2013, pp. 329-348.

Kravchenko T.A., Aristov I.V., Ion Ex-change, N.Y., M., Dekker, 2000, pp. 691-764.

Kravchenko T.A., Polyanskij L.N., Ka-linichev A.I. et al., Nanokompozity metall-ionoobmennik, M., Nauka, 2009, 391 p.

Kravchenko T.A., Zolotuhina E.V., Chajka M.Yu. et al., Elektrohimiya nanokompozitov metall-ionoobmennik, M., Nauka, 2013, 365 p.

Informaciya o produkte Lewatit K2620. Rezhim dostupa: http://filtroxrus.ru/uploads/files/smoly_LEWATIT/K%202620-RUS.pdf (data obrashcheniya: 07.04.2020).

Krishtal M.M., Yasnikov I.S., Mir fiziki i tekhniki. Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektral'nyj mikroanaliz v primerah prakticheskogo primeneniya, M., Tekhnosfera, 2009, 208 p.

Kravchenko T.A., Vahnin D.D., Pridorogina V.E. et al., Sorbtsionnye i khromatograficheskie protsessy, 2020, Vol. 20, No 4, pp. 539-548.

Kravchenko T.A., Vahnin D.D., Chumakova A.V. et al., Sorbtsionnye i khromatograficheskie protsessy, 2020, Vol. 20, No 4, pp. 434-444.

Horol'skaya S.V, Polyanskij L.N., Kravchenko T.A. et al., Rossijskie nanotekhnologii, 2015, Vol. 10, No 9-10, pp. 69-73.

Published
2021-12-11
How to Cite
Kravchenko , T. A., Shevtsova , E. A., & Krysanov , V. A. (2021). Nanosize effects of metal-ion exchanger composites during electrochemical reduction of oxygen dissolved in water . Sorbtsionnye I Khromatograficheskie Protsessy, 21(5), 630-644. https://doi.org/10.17308/sorpchrom.2021.21/3769