The use of polyelectrolytes for determining the concentration of sucrose in solution by the optical micrometry method
Abstract
The aim of this study was the development of a kinetic method for the determination of sucrose concentration by optical micrometry for the rapid analysis of sugar-containing food products. The objects of research were the strongly acidic cation exchanger KU-2×4 and the weakly acidic cation exchangers KB-2e-3 and KB-4p-2, taken in different ionic forms. The experiments were carried out in static cells on aqueous solutions of sucrose with concentrations of 100.0 g/cm3, as well as 0.1, 0.2, 0.5, and 1.0 mol/dm3. Over the course of the experiments, the dependence of the shape of the kinetic curves on the nature of the counterion, polymer matrix, and crosslinking reagent was obtained. It was found that cation exchangers in Ca2+ forms possess the highest sensitivity to sucrose. In this case, the KB-2e-3 cation exchanger demonstrated the optimal rate of change in the degree of swelling in the initial section of the kinetic curve, which is important from the point of view of minimizing the error in the method for determining the concentration. The most important factor, from the point of view of analytical chemistry, is the initial portion of the kinetic curves, which has a characteristic extremum, the shape of which is determined by the nature of the sensor polymer, solvent, and solute. For the assessment of the sensitivity of the method, the dependences of the depth of the minimum on the concentration of the sucrose solution were obtained. Based on the value of the standard deviation of the V/V0 measurement, which was 0.01, it was found that the detection limit of sucrose in aqueous solutions using KU-2×4 was 0.18 mol/dm3, the detection limit using KB-2e-3 was 0.10 mol/dm3. Therefore, for the analysis of aqueous solutions of sucrose, the most preferable is the use of KB-2e-3 in the Ca2+ form. Thus, it has been shown that there is possibility to determine the concentration of sucrose in aqueous solutions by optical micrometry using the kinetic swelling surfaces of polyelectrolyte granules. Nevertheless, the problem of the selectivity of the method remains unsolved. The search for new polymer sensor granules for the determination of sucrose and other sugars by optical micrometry in honey, confectionery, dairy products, beverages, etc. continues.
Downloads
References
GOST 5903-89. Izdeliya konditerskie. Metody` opredeleniya sakhara, M., Standartinform, 2012, 24 p.
GOST R 54667-2011, Moloko i produkty` pererabotki moloka, Metody` opredeleniya massovoj doli Sakharov, M., Standartinform, 2012, 23 p.
GOST 32167-2013. Med. Metod opredeleniya Sakharov, M., Standartinform, 2018, 11 p.
Simeone M.L.F., Parrella R.A.C., Schaffert R.E., Damasceno C.M.B. et al., Microchem. J., 2017, Vol. 134, pp. 125-130. DOI: https://10.1016/j.microc.2017.05.020.
Pan L., Zhu Q., Lu R., McGrath J.M., Food Chem., 2015, Vol. 167, pp. 264-271. DOI: https://10.1016/j.foodchem.2014.06.117.
Balan B., Dhaulaniya A.S., Jamwal R., Yadav A. et al., Spectrochim. Acta A, 2020, Vol. 240, 118628. DOI: https://10.1016/j.saa.2020.118628.
Wang T., Rodriuez-Saona L.E., J. Food Sci., 2012, Vol. 77, No 8, pp. C874-C879. DOI: https://10.1111/j.1750-3841.2012.02824.x.
Wang J., Klils M.M., Jun S., Jackson M., Li Q.X., J. Food Sci., 2010, Vol. 75, No 2, pp. C208-C214. DOI: https://10.1111/j.1750-3841.2009.01504.x.
Landari H., Roudjane M., Messaddeq Yo., Miled A., Micromachines, 2018, Vol. 9, No 10, p. 517. DOI: https://10.3390/mi9100517.
Tůma P., Sommerová B., Daněček V., Food Chem., 2020, Vol. 316, 126362. DOI: https://10.1016/j.foodchem.2020.126362.
Alekseeva A.V., Karczova L.A., Ka-zachishheva N.V., Zhurn. analit. Khimii, 2010, Vol. 65, No 2. pp. 205-211. DOI: https://10.1134/S1061934810020176.
GOST 33527-2015. Moloko i mo-lochny`e sostavny`e produkty` dlya detskogo pitaniya. Opredelenie massovoj doli mono- i disakharidov s ispol`zovaniem kapillyarnogo e`lektroforeza. M. Standartin-form, 2019, 12 p.
Rizelio V.M., Tenfen L., da Silveira R., Gonzaga L.V. et al., Talanta, 2012, Vol. 93, pp. 62-66. DOI: https://10.1016/j.talanta.2012.01.034.
Aljohar H.I., Maher H.M., Albaqami J., Al-Mehaizie M. et al., Saudi Pharm. J., 2018, Vol. 26, No 7, pp. 932-942. DOI: https://10.1016/j.jsps.2018.04.013.
Debebe A., Temesgen Sh., Redi-Abshiro M., Chandravanshi B.S. et al., J. Anal. Methods Chem., 2018, Vol. 2018, 4010298. DOI: https://10.1155/2018/4010298.
Kudukhova I.G., Rudakov O.B., Rudakova L.V., Ferapontov N.B., Sorbtsionnye i khromatograficheskie protsessy, 2010, Vol. 10, No 5, pp. 759-761.
Ferapontov N.B., Kovaleva S.S., Rubin F.F., Zhurn. analit. khimii., 2007, Vol. 62, No 10, pp. 1028-1033. DOI: https://10.1134/S1061934807100048.
Ferapontov N.B., Rubin F.F., Kovaleva S.S. Patent RF, No 2282850, 2006.
Babayan I.I., Tokmachev M.G., Ivanov A.V., Ferapontov N.B., Zhur. analit. Khimii, 2019, Vol. 74, No 8, pp. 634-638. DOI: https://10.1134/S1061934819080033.
Tokmachev M.G., Ferapontov N.B., Trobov Kh.T., Gavlina O.T., Uchen. Zapiski fizich. fak-ta Mosk. un-ta, 2018, No 5, 1850303.
Nekryach E.F., Gorokhovatskaya N.V., Avramchuk L.P., Kurilenko O.D., Ionity` i ionny`j obmen. No 22, pod red. A.V. Kiseleva. M., Nauka, 1966, pp. 40-46.
Kry`lov E.A., Diss. kand. khim. nauk. Nizhnij Novgorod, 1997, 280 p.
Ilyukhina E.A., Diss. kand. khim. nauk. M., 2008, 193 p.
Gagarin A.N., Ferapontov N.B., Tokmachev M.G., Kolloidn. Zhurnal, 2017, Vol. 79, No 6, pp. 705-712. DOI: https://10.1134/S1061933X17060096.
Gel`ferikh F., Ionity, Per. s nem. M. Izd-vo inostr. lit-ry`, 1962, 490 p.
Trostyanskaya E.B., Makarova S.B., Aptova T.A., Murashko I.N. et al., V kn.: Sintez i svojstva ionoobmenny`kh materialov / pod red. K.V. Chmutova, M., Nauka, 1968, pp. 17-22.
Sundheim B.R., Waxman M.H., Gregor H.P., J. Phys. Chem., 1953, Vol. 57, No 9, pp. 974-978. DOI: https://10.1021/j150510a029.
Saldadze K.M., Kopy`lova-Valova V.D., Kompleksoobrazuyushhie ionity` (kompleksity`), M., Khimiya, 1980, 336 p.