Sorption properties of the antibacterial composite glauconite and copper nanoparticles

  • Т. М. Махова Makhova Tatiana M. – the postgraduate student, department of analytical chemistry and chemical ecology, Saratov State University, Saratov, e-mail: tatianaahrimova@mail.ru
  • Е. М. Солдатенко Soldatenko Elena M. - the postgraduate student, department of analytical chemistry and chemical ecology, Saratov State University, Saratov, e-mail: SoldatenkoEM@mail.ru
  • С. Ю. Доронин Doronin Sergei Yu. – prof., grand Ph.D (chemistry), department of analytical chemistry and chemical ecology, Saratov State University, Saratov
  • Р. К. Чернова Chernova Rimma K. - – prof., grand Ph.D (chemistry), department of analytical chemistry and chemical ecology, Saratov State University, Saratov
Keywords: inorganic sorbents, glauconite, sorption, composite, copper nanoparticles, ions of heavy metals.

Abstract

The sorption properties of glauconite from Beloozersk deposits (Saratov region) and its composite
with copper nanoparticles for Fe3+, Mn2+ and Cu2+ ions have been investigated. The sorption experiments are
studied in static conditions by varying concentrations from 0.36 to 3.6 mg/l for iron and manganese salts, and
from 0.31 to 3.1 mg/l for copper salts. The concentration of these ions is determined spectrophotometrically.
The main sorption characteristics of these materials such as static sorption capacity (0.26, 0.11, 0.08 mmol/g)
and extraction ratio (99.7, 77.7, 96.7 %) for Fe3 +, Mn2 + and Cu2 + ions are calculated, respectively. The equilibrium
data has been analyzed using Langmuir and Freundlich isotherms, and empirical constants (Кf and n),
activation energy of the sorption process are calculated. The Langmuir isotherm is demonstrated to provide
the best correlation (R2
= 0.991 – 0.999), indicating on the monomolecular mechanism of sorption. It is
shown that glauconite and its composite with copper nanoparticles have comparable values of sorption capacity
for Fe3+ and Mn2+ ions, at the same time we can see reducing of this parameter for Cu2+ applied to the
sorption by composite with copper nanoparticles.

Downloads

Download data is not yet available.

References

1. Venig S.B., Serzhantov V.G., Chernova R.K., Selifonova E.I. et al., «Fizicheskie protsessy v biologicheskikh sistemakh», sbornik trudov Vseros. internet-konferentsii s mezhdunarodnym uchastiem, Kazan, 2014, рр. 14-16.
2. Serzhantov V.G., Andronov S.A., Bykov V.I. Patent RF, № 2296016, 2007.
3. Sinel'tsev A.A., Gubina T.I., Antonova I.A., Serzhantov V.G., Khimicheskaya fizika ekologicheskikh protsessov, 2012, Vol. 31, No 10, pp. 29-32.
4. Grishin P.N. Kravchenko V.V., Kravchenko I.P., Agronomicheskie rudy i netraditsionnoe mineral'noe syr'e. Saratov, SGU, 2010, 137 p.
5. Venig C.B., Serzhantov V.G., Selifonova E.I., Splyukhin V.P. et al., «Metody komp'yuternoi diagnostiki v biologii i meditsine», materialy Vseros. shkoly-seminara, Saratov, 2015, pp. 217-220.
6. Xia M.S., Hu C.H., Xu Z.R., Animal Feed Science and Technology, 2005, Vol. 118, No 3-4, рр. 307-317.
7. Xia M.S., Hu C.H., Xu Z.R., Poult Sci., 2004, Vol. 83, No 11, рр. 1868-1875.
8. Bagchi B., Kar S., Dey S.K., Bhandary S. et al., Colloids Surf B Biointerfaces, 2013, Vol. 108, рр. 358-365.
9. Soldatenko E.M., Doronin S.Yu., Chernova R.K., Venig S.B. et al., Butlerovskie soobshcheniya, 2015, Vol. 42, No 6, pp. 1-6.
10. Vigdorovich V.I., Bogdanova E.P., Tsygankova L.E., Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya, 2011, No 1, pp. 21-26.
11. Sirakanyan M.A., Varderesyan G.Ts., Kotikyan S.Yu., Vestnik GIUA. Seriya “Khimicheskie i prirodookhrannye tekhnologii”, 2013, Vol. 16, No 1, pp. 82-89.
12. Vigdorovich V.I., Bogdanova E.P., Sorbtsionnye i khromatograficheskie protsessy, 2011, Vol. 11, No 6, pp. 913-921.
13. Zhantuarov S. R., Umirzakov A. G., Martem'yanov D. V., XIX Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Sovremennaya tekhnika i tekhnologii», 2013, pp. 427-428.
14. Franus M., Bandura L.,Fresenius EnvironmentalBulletin, 2014, Vol. 23, No 3a, рр. 825-839.
15. Taubaeva E.S., Dzhusipbekov U.Zh., Zhunusov S.M., Vestnik Kazakhskogo natsional'nogo tekhnicheskogo universiteta im. K. I. Satpaeva, 2010, Vol. 82, No 6.
16. Vigdorovich V.I., Tsygankova L.E. Nikolenko D.V., Protasov A.S., Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 2013, Vol. 18, No 1, pp. 393-396.
17. Vigdorovich V.I., Tsygankova L.E., Nikolenko D.V., Akulov A.I. et al., Sorbtsionnye i khromatograficheskie protsessy, 2010, Vol. 10, No 1, pp. 121-126.
18. Vigdorovich V.I., Bogdanova E.P., Tsygankova L.E., Sorbtsionnye i khromatograficheskie protsessy, 2012, Vol. 12, No 2, pp. 274-282.
19. GOST 4011-72 Voda pit'evaya. Metody izmereniya massovoi kontsentratsii obshchego zheleza. M: Izdatel'stvo Standartov, 2008, 7 p. 20. GOST 4974-72 Voda pit'evaya. Metody opredeleniya soderzhaniya margantsa. M: Izdatel'stvo Standartov, 1974, pp. 545-550.
21. Chernova R.K., Kulapina E.G., Kozlova L.M., Beloliptseva G.M. Praktikum po analiticheskoi khimii: Uchebnoe Posobie. Saratov, Izd-vo Saratovskogo universiteta, 2003, 240 p.
22. Frolov Yu.G. Poverkhnostnye yavleniya i dispersnye sistemy, Moskva, Khimiya, 1982, 400 p.
Published
2018-02-21
How to Cite
Махова, Т. М., Солдатенко, Е. М., Доронин, С. Ю., & Чернова, Р. К. (2018). Sorption properties of the antibacterial composite glauconite and copper nanoparticles. Sorbtsionnye I Khromatograficheskie Protsessy, 17(3), 443-450. https://doi.org/10.17308/sorpchrom.2017.17/399