Binding properties of the oligotrophic peat under dynamic sorption: plug-flow reactor model validity
Abstract
Accumulation within the swamps takes place due to the peat ability to bind incoming elements. Being
the major part of the flow into the swamps, surface flow necessitates the correct description of the upper
layers of the peat deposits. The description itself helps to forecast the migration of the heavy metals. Horizontal
flow of the groundwater through the peat layer may be described as the movement of the mobile phase
(groundwater) through the stationary one (peat layer). Such an approach helps to describe dynamic equilibrium
mathematically. Authors propose to apply plug-flow reactor model to describe the dynamic sorption of
heavy metals by the oligotrophic peat (by the example of lead (II) and cadmium (II)). The tested sample is
least decomposed oligotrophic peat, sampled at Ilass swamp (Russia, Arkhangelsk region) at 0-20 cm depth
(tested fraction is 0.1-0.25 mm). Sorption system’s properties were determined through non-linear regression of the plug-flow reactor model’s numerical solution. Chosen dynamic sorption model considers two
processes: convective transfer of the metal ions due to the flow of the liquid through sorbent column and their
distribution between two phases (liguid mobile and solid stationary ones). The study of the metal binding
under dynamic conditions was performed by placing peat sample into the temperature-controlled column and
passing the model solution of lead and cadmium ions (after passing the eluent – distilled water), keeping the
flow speed constant. Obtained distribution and mass transfer indices will allow to forecast the binding of
heavy metals under dynamic sorption process within isothermic dynamic systems. Being increased, temperature
gives a raise to Henry’s law constant for both metals, confirming endothermal sorption of the metals by
the peat and correlates with the thermodynamic characteristics of the sorption process under static conditions.
Downloads
References
2. Syrovetnik K., Malmström M.E., Neretnieks I., Environ. Pollut., 2007, Vol. 147, pp. 291-300. DOI: 147(1):291-300. Available at: www.ncbi.nlm.nih.gov (accessed 02.02.2017).
3. De Vleeschouwer F., Gérard L., Goormaghtigh C., Mattielli N. et al., Sci. Total Environ., 2007, Vol. 377, pp. 282-295. DOI: 377(2-3):282-95. Available at: www.ncbi.nlm.nih.gov (accessed 02.02.2017).
4. Shotyk W., Environ. Rev., 1999, Vol. 4, No 2, pp.149-183. DOI: 10.1139/a96-010. Available at: http://www.nrcresearchpress.com (accessed
02.02.2017).
5. Ivanov K.E. Vodoobmen v bolotnykh landshaftakh. L., Gidrometeoizdat, 1975, 280 p. (in Russian).
6. Ruthven D. M. Principles of Adsorption and Adsorption Processes. New York, John Wiley&Sons, 1984, 433p.
7. Gamayunov N.I., Kosov. V.I., Maslennikov B.I., Ionoobmennye processy i ehlektrokineticheskie yavleniya v nabuhayushchih prirodnyh i sinteticheskih ionitah: monografiya, Tver’, TGU, 1999, 156 p. (in Russian).
8. Minkina T.M., Pinskii D.L., Samokhin A.P., Agrokhimiya, 2005, No 8, pp. 58-64. (in Russian).
9. Cheung C.W., Chan C.K., Porter J.F., McKay G., J. Colloid Interf. Sci., 2001, Vol. 234, pp. 328-336. DOI: 10.1006/jcis.2000.7281.
Available at: http://www.sciencedirect.com (accessed 02.02.2017).
10. Silva V.M.T.M., Rodrigues A.E., Chem.Eng. Sci., 2006, Vol. 61, No 2, pp. 316- 331. DOI: 10.1016/j.ces.2005.07.017. Available
at: http://www.sciencedirect.com (accessed 02.02.2017).
11. Yilmaz I., Kabay N., Yüksel M., Holdich R. et al., Sep. Sci. Technol., 2007, Vol. 42, No 5, pp. 1013-1029. DOI: 10.1080/01496390701206181. Available at:
http://www.tandfonline.com (accessed 02.02.2017).
12. Anzelius A., Andrew Z., Zeit. Ang. Math. Mech., 1926, Vol. 6, pp. 291-294. OI: 10.1002/zamm.19260060404. Available at: http://onlinelibrary.wiley.com (accessed 02.02.2017).
13. Furnas C.C., Bellinger F., Trans. Am. Inst. Chem. Eng., 1938, Vol. 34, pp. 251.
14. Klinkenberg A., Ind.Eng.Chem., 1954, Vol. 46, pp. 2285-2289. DOI: 10.1021/ie50539a021. Available at: http://pubs.acs.org (accessed 02.02.2017).
15. Rodrigues A.E., Tondeur D., Percolation Process: theory and applications. Rockville, Md.: Sijthoff & Nordhoff, 1981, 596 p.
16. Zhukhovitskii A.A., Zabezhinskii Ya.L., Tikhonov A.N., Zhurnal Fiz. Khimii. 1945, Vol. 19, No 6, pp. 253-261. (in Russian).
17. Venitsianov E.V., Rubinshtein R.N. Dinamika sorbtsii iz zhidkikh sred. M., Nauka, 1983, 240 p. (in Russian).
18. Molokanov Yu.K. Protsessy i apparaty neftegazopererabotki, M.,Khimiya, 1980, 408 p. (in Russian).
19. Larionov N.S., Bogolitsyn K.G., Bogdanov M.V., Kuznetsova I.A., Khimiya rastitel'nogo syr'ya, 2008, No 4, pp. 147-152. (in Russian).