Effect of different mechanisms of heating of layered aluminosilicate on sorption processes Communication 1. Effect of preliminary thermal and electromagnetic (microwave) heating of montmorillonite on sorption of water

  • Н. А. Ходосова Khodosova Nataliia A. - PhD, associate professor of Chemistry Department, Voronezh State University of Forestry and Technologies named after G.F. Morozov, E-mail: nhodosova@mail.ru
  • Л. И. Бельчинская Belchinskaya Larisa I. – doctor of science, professor, head of Department of Chemistry Voronezh State University of Forestry and Technologies named after G.F. Morozov, Voronezh
  • Л. А. Новикова Novikova Liudmila A. - PhD, associate professor of Chemistry Department, Voronezh State University of Forestry and Technologies named after G.F. Morozov, E-mail: yonk@mail.ru
Keywords: montmorillonite, thermal heating, microwave-heating, derivatography, water adsorption, kinetics of adsorption, limiting stage of adsorption

Abstract

Clay minerals of layered structure can be applied for production of highly effective sorbents due to variation of their liophilic, structural-sorption and structural-mechanic properties in modification or activation processes (acidic or basic activation, ion-exchange, hydrothermal or ultrasonic treatment, hydrophobization, etc.). Thermal treatment, directed from the surface to interior of the sample, is a conventional way of sorbents activation and regeneration. The present work considered two different mechanisms of heating (thermal heating and heating due transformation of electromagnetic waves of ultrahigh frequency into thermal energy of material) of the sorbent based on natural layered mineral montmorillonite with the purpose of activation of its sorption ability.

Samples of natural aluminosilicate (M95) containing 95% of montmorillonite and 5% of illite (deposit in Khakassiya, Russia) were preliminary thermally treated at earlier determined temperature 453K for 1 hour to acquire maximal adsorption capacity towards water vapours.

Electromagnetic treatment was carried out at 800 W power of electromagnetic field for 4 min in a microwave. Thermal analysis was used to determine thermal effects, range of thermal stability and mass loss by thermal treatment of the sorbent. Equilibrium and kinetic dependences of water vapours adsorption by the investigated samples of natural and activated sorbent were obtained applying gravimetric method at an equilibrium atmospheric pressure and temperature of 293 K.

Thermal activation of M95 sample increased its sorption capacity to water vapours in 3.3 times, whereas microwave treatment in 5.5 times, mainly, due to aluminosilicate dehydration and release of micropores.

According to derivatograms of natural sample M95 the endoeffect in the range 353-533K was caused by removal of physically bound water from the channels and pores of the sorbent. The loss of mass was 13.5%. Themal treamtnet of the sample led to disappearance of this edoeffect (mass loss of 5.1%), whereas subsequent adsorption of water vapours again demonstrates this endoeffect as a result of sorbent rehydration.

Applying the two binomial equation of theory of micropore volume filling (TMVF) derived for microporous sorbents, the adsorption of water by investigated M95 sample was calculated.

Kinetic dependences of water vapour adsorption on natural montmorillonite illustrated that adsorption equilibrium was set within 20 hours. The calculated values of internal and external diffusion was correspondingly 1.25·10-11 and 112.0·10-11 cm2/c that determine a stage of internal diffusion of water as limiting stage of adsorption.

Thus, UHF-heating of natural montmorillonite allowed increasing its adsorption capacity to water vapours in more than 5 time and reduce the time of treatment in 15 times comparing to conventional heating.

Downloads

Download data is not yet available.

References

1. Gliny, ikh mineralogiya, svoistva I prakticheskoe primenenie, pod red. F.V. Chekhrova, М., Nauka, 1970, 272 p.
2. AlSawalha M., Obra E., Roessner F., Sorbtsionnye i khromatograficheskie protsessy, 2016, Vol. 16, No 6, pp. 781-787.
3. Betekhtin A.G. Kurs mineralogii, М., Gos. Nauchno-tekhnich. isd. liter. po geologii i okhrane nedr., 1951, 558 p.
4. Yurchenko V.V., Sviridov A.V., Sviridov V.V., Nikiforov A.F. et al., Sorbtsionnye i khromatograficheskie protsessy, 2017, Vol. 17, No 3, pp. 506-5012.
5. Smolegovskii A.M., Razvitie predstavlenii o structure silikatov, М., Nauka, 1979, 231 p.
6. Kukovskii E.G., Osobennosti kristallokhimii sloistykh alumosilikatov po dannym radiospektroskopii, Kiev, Naukova dumka, 1973, 126 p.
7. Fedorinin R.P., Khramchenkov R.P., Uchenye zapiski Kazanskogo gosudarstvennogo universiteta, 2010, Vol. 152, kn. 1, Estestvennye nauki, pp.270-274.
8. Novikova L.A., Strelnikova O.Yu., Khodosova N.A., Belchinskaya L.I.. et al., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 2, pp. 185-189.http://www.sorpchrom.vsu.ru/articles/20140201.pdf.
9. Vasiliev H.G., Ovcharenko F.D., Proc. Intern. Conference of Colloid and Surface Science, Budapest:,Academiai Klado, 1975, pp. 19-26.
10. Belchinskaya L.I., Khodosova N.A., Strelnikova O.Yu. Petukhova G.A. et al., Physikokhimiya poverkhnosti i zaschita materialov, 2015, Vol. 51, No 5, pp. 1-8.
11. Barrer R.M., Zeolites and clay minerals as sorbents and molecular sieves, London – New York – San Francisco, Acad. Press, 1978, 498 p.
12. Ovcharenko F.D., Gidrofilnost glin I glinistykh mineralov, Kiev, Izd-vo AN USSR, 1961, 275 p.
13. Tarasevich Yu.I., Ovcharenko F.D., Adsorbtsiya na glinistykh mineralah, Kiev, Naukova dumka, 1975,352 p.
14. Tarasevich Yu.I., Stroenie I khimiya poverkhnosti sloistykh silikatov, Kiev, Naukova dumka, 1988, 248 p.
15. Tsitsizshvili G.V., Prirodnye mineralnye sorbenty, Kiev: Izd-vo AN USSR, 1960, pp. 63.
16. Kotova D.L., Artamonova M.N., Krysanova T.A., Novikova L.A. et al., Sorbtsionnye i khromatograficheskie protsessy, 2016, Vol. 16, No 3, pp. 390-395. http://www.sorpchrom.vsu.ru/articles/20160315.pdf.
17. Belchinskaya L.I., Khodosova N.A., Bityutskay L.A., Protection of Metals and Physical Chemistry of Surfaces, 2009, Vol. 45, No 2, pp. 203-206
18. Khodosova N.A., Diss…kand.khim.nauk, Ivanovo, 2009, 184 p.
19. Senderov E.E., Khitarov N.I., Tseolity, ikh sintez I usloviya obrazovaniya v prirode, М., Nauka, 1970. 283 p.
20. Polaert I., Ledoux A., Estel L., Huyghe R., Thomas M., Récents Progrès en Génie des Procédés, 2007, No 94, pp. 1-8.
21. Pinchukova N.A., Voloshko A.Yu., Baumer V.N., Shishkin O.V. et al., Chemical Engineering and Processing, 2015, Vol. 95, pp. 151-158.
22. Kalantarifard A., Gon J.G., Yang G.S., Terr. Atmos. Ocean. Sci., 2016, Vol. 27, No 6, pp. 865-875.
23. Bakhiya T., Khamizov R., Bazhiev M.D., Konov M.A, Sorbtsionnye i khromatograficheskie protsessy,. 2016, Vol. 16., No 6, pp. 803-812.
24. Tsitsishvili G.V., Andronikashvili T.G., Kirov G.N., Filizov L.D., Prirodnye tseolity, М., Khimiya, 1985, 224 p.
25. Znamenskii Yu.P., Zhurn. Physich. Khimii. 1993, Vol. 67, No 7, pp. 1924-1927.
26. Rodionov A.I., Klushin V.N., Torocheshnikov N.S., Technica zaschity okrujauschei sredy. Uchebnik dlya vuzov, М., Khimiya, 1989, 512 p.
27. Novikova L., Belchinskaya L., Roessner F., Alsawalha M., ActaGeodynamica et Geomaterialia, 2013, Vol. 10, No 4 (172), pp. 475–484. DOI 10.13168/AGG.2013.0048. IF=0.561.
28. Belchinskaya L.I., Khodosova N.A., Novikova L.A., StrelnikovaO.Yu. et al., Physical chemistry of surface and protection of materials, 2016, Vol. 52, No 4, pp. 599-606. doi:10.1134/S2070205116040055.
29. Bergaya F., Lagaly G., Handbook of Clay Science. Developments in Clay Science 5, Amsterdam, Elsevier, 2013, 787 p.
30. Schoonheydt R.A., Handbook of Clay Science. Developments in Clay Science / Bergaya F., Theng B.K.G., Lagaly G., Elsevier Ltd., 2006, pp. 87-113.
31. Anisimov M.V. Diss… kand. tehn. nauk. Voronezh, 2012. 251 p.
Published
2018-02-22
How to Cite
Ходосова, Н. А., Бельчинская, Л. И., & Новикова, Л. А. (2018). Effect of different mechanisms of heating of layered aluminosilicate on sorption processes Communication 1. Effect of preliminary thermal and electromagnetic (microwave) heating of montmorillonite on sorption of water. Sorbtsionnye I Khromatograficheskie Protsessy, 17(5), 781-791. https://doi.org/10.17308/sorpchrom.2017.17/439