Investigation of the process of solution deionization by electro-sorption on aerogel electrodes via mathematical modeling

  • Nikolai А. Tikhonov Grand PhD in Physico-mathematical sciences, Professor of the mathematical department of physical faculty, Moscow Lomonosov State University, Moscow
  • Mikhail G. Tokmachev PhD in Physico-mathematical sciences, senior lecturer of the mathematical department of physical faculty, Moscow Lomonosov State University, Moscow E-mail: miket@mail.ru
Keywords: deionization, aerogel electrodes, mathematical modeling

Abstract

Dynamics of deionization of electrolyte solution by sorption on aerogel electrodes is studied in the work on the basis of mathematical modeling. The processes of substance transfer by solution flow, diffusion and sorption in pores are taken into account. The models describing the phenomenon with varying degrees of detail are proposed. Difficulties encountered at numerical calculations of the process and the possibilities of their overcoming are shown.

It is demonstrated that at low solution concentrations and a small pore size the electro-sorption effect does not reduce to the formation of an electrical double layer on the pore surface that takes ions out of solution. In addition to the formation of the layer, there is an accumulation of a distributed ion charge in the entire volume of the pores. Calculation examples of the deionization process in a cyclic regime are given.

The influence of the different physical parameters such as the concentration of the electrolyte, the size and shape of the aerogel electrode pores, solution flow rate, length and thickness of the channel between electrodes, thickness of the electrodes and their electrical conductivity is studied on the of the output curve shape and the performance of the process. Some analytical assessments of the purified solution volume at various deionization degrees have been got

Downloads

Download data is not yet available.

References

1. Al Marzooqi F.A., Al Ghaferi A.A., Saadat I., Hilal N., Desalination, 2014, Vol. 342, pp. 3-15.
2. Zhao R.; Biesheuvel P.M.; van der Wal A., Energy & Environmental Science, 2012, Vol. 5, No 11, pp. 9520-9527. doi:10.1039/c2ee21737f.
3. Kim T., Dykstra J.E., Porada S, van der Wal A. et al., J. Colloid Interface Science, 2014, Vol. 446, pp. 317-326. doi:10.1016/j.jcis.2014.08.041.
4. Suss M.E., Porada S., Sun X., Biesheuvel P.M. et al., Energy & Environmental Science. 2015, Vol. 8, No 8, pp. 2296-2319. doi:10.1039/C5EE00519A.
5. Porada S., Zhao R., van der Wal A., Presser V. et al., Progress in Materials Science, 2013, Vol. 58, No 8, pp. 1388-1442. doi:10.1016/j.pmatsci.2013.03.005.
6. Anderson M.A., Cudero A.L., Palma J., Electrochimica Acta, 2010, Vol. 55, No 12, pp. 3845-3856. doi:10.1016/j.electacta.2010.02.012.
7. Vol'fkovich Yu.M., Mikhalin A.A., Bograchev D.A., Sosenkin V.E., Elektrokhimiya, 2012, Vol. 48, No 4, pp. 467-477.
8. Oren Y., Desalination, 2008, Vol. 228, pp.10-29.
9. Rasines G., Lavela P., Macías C., Haro M. et al., J. Electroanalytical Chem, 2012, Vol. 671, pp. 92-98.
10. Marmanis D., Christoforidis A., Ouzounis K., Dermentzis K., Global NEST Journal, 2014, Vol. 16, No 4, pp. 609-615.
11. Iozzo D.A.B., Tong M., Wu G., Furlani E.P., J. Phys. Chem. C, 2015, Vol. 119, No 45, pp. 25235-25242.
12. Kirby B.J. The diffuse structure of the electrical double layer, www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidics.html
13. Yang K., Ying T., Yiacoumi S., Tsouris C. et al., Langmuir, 2001, Vol. 17, pp. 1961-1969.
14. Rios Perez C.A., Demirer O.N., Clifton, R.L., Naylor R.M. et al., J. Electrochem. Soc., 2013, Vol. 160, No 3, pp. E13-E21.
15. Robinson D.B., Wu Ch. M., Jacobs B.W., J. Electrochem. Soc. 2010, Vol. 157, No 8, pp. A912-A918.
16. Honda K., Yoshimura M., Kawakita K., Fujishima A. et al., J. Electrochem. Soc., 2004, Vol. 151, No 4, pp. A532-A541.
17. Hoyt N.C., Wainright J.W., Savinell R.F., J. Electrochem. Soc., 2015, Vol. 162, No 4, pp. A652-A657.
18. Niu C., Sichel E.K., Hoch R., Moy D. et al. , Appl. Phys. Lett. 1997. Vol. 70. No 11. pp. 1480-1482.
19. Hemmatifar A., Stadermann M., Santiago J.G., J. Phys. Chem. C, 2015, Vol. 119, No 44, pp. 24681-24694.
20. Gaberlich C.J., Xu P., Cohen Y., Sustainability Science and Engineering, 2010, Vol. 2, pp. 295-326.
21. Suss M.E., J. Electrochem. Soc., 2017, Vol. 164, No 9, pp. E270-E275
Published
2018-02-22
How to Cite
TikhonovN. А., & Tokmachev, M. G. (2018). Investigation of the process of solution deionization by electro-sorption on aerogel electrodes via mathematical modeling. Sorbtsionnye I Khromatograficheskie Protsessy, 17(6), 893-906. https://doi.org/10.17308/sorpchrom.2017.17/450