Influence of flavonoids on porosity and structure of mesoporic materials type SBA-15 in their synthesis
Abstract
Mesoporous materials such as SBA-15 can be used as an alternative to silica and other sorbents in chromatographic processes for the sorption preconcentration and recovery of polyphenolic substances. A large number of different synthesis approaches for the preparation of nanostructured sorbents have been published in the literature since the first development of mesoporous materials. An increase in selectivity, and in the efficiency of separation of flavonoids can be achieved by creating highly selective materials based on systems "structurally oriented" on the target sorbate. The purpose of this work was to study the features of the structure of mesoporous silica of SBA-15 type, synthesized in the presence of flavonoids.
The materials were synthesized in the presence of flavonoids by sol-gel method with the addition of varying amounts of quercetin or (+)-catechin (0.00025 ÷ 0.00250 mol) to the reaction mixture containing Pluronic P123, H2O and HCl.
Using the methods of low-temperature nitrogen adsorption/desorption, X-ray diffraction analysis, the formation of a highly ordered hexagonal structure and its changes in the synthesis of materials in the presence of flavonoids was demonstrated. Based on the data of thermogravimetry, the influence of the synthesis conditions on the surface density of silanol groups and the hydrophobicity of the materials are shown. The variation of the nature and concentration of flavonoid allows to obtain sorbents with high ordered structure, and different hydrophobicity while high sorption capacity maintains.
Sorption of quercetin by mesoporous materials such as SBA-15 is considered under static conditions. On the basis of sorption data of quercetin from acetonitrile solutions under static conditions distribution coefficients are obtained.
Downloads
References
2. Kresge C.T., Nature, 1992, Vol. 359, pp. 710-712. DOI:10.1038/359710a0
3. Zhao D., Huo Q., Feng J. et al., J. Am. Chem. Soc., 1998, Vol. 120, pp. 6024-6036. DOI: 10.1021/ja974025i.
4. Tanev P.T., Pinnavaia T.J., Chem. Mater., 1996, Vol. 8, pp. 2068-2079. DOI: 10.1021/cm950549a.
5. Nandi M., Sarkar M., Sarkar K., Bhaumik A., J. Phys. Chem. C., 2009, No 113, pp. 6839-6844. DOI: 10.1021/jp8114034.
6. Branton P.J., Hall P.G., Sing K.S.W, Adsorption, 1995, Vol. 1, pp. 77-82. DOI: 10.1007/BF00704147.
7. Glaeser R., Roesky R., Boger T. et al., Studies in Surface Science and Catalyst., 1997, Vol. 105, pp. 695-702. DOI: org/10.1016/S0167-2991(97)80618-0.
8. Sinyaeva L.A., Karpov S.I., Belanova N.A., Russian Journal of Physical Chemistry A., 2015, Vol. 89, No 12, pp. 1923-1930. .DOI: 10.1134/S0036024415120298.
9. Karpov S.I., Belanova N.A., Korabel'nikova E.O. et al., Russian Journal of Physical Chemistry, 2015, Vol. 89, No 5, pp. 855-860. DOI: 10.1134/S0036024415050179.
10. Karpov S.I., Roessner F., Selemenev V.F. et al., Sorbtsionnyye i khromatograficheskiye protsessy, Vol. 13, No 2, pp. 125-140.
11. Krizhanovskaya O.O., Borodina Ye.V., Karpov S.I. et al., Sorbtsionnyye i khromatograficheskiye protsessy, 2012, Vol. 12, No 4, pp. 583-591.
12. Sukhareva D.A., Gus'kov V.YU., Karpov S.I. et al., Russian Journal of Physical Chemistry, 2016, Vol. 90, No 02, pp. 285. DOI: 10.7868/S0044453716020291.
13. Zhao Xiu S., Industrial and Engineering Chemistry Research, 1996, No 35, pp. 2075-2090. DOI: 10.1021/ie950702a.
14. Ariga K., Coordination Chemistry Reviews, 2007, No 251, pp. 2562-2591. DOI: 10.1016/j.ccr.2007.02.024.
15. Meynen V., Cool P., Vansant E.F., Microporous and Mesoporous Materials, 2009, No 125, pp. 170-223. DOI:10.1016/j.micromeso.2009.03.046.
16. Karpov S.I., Roessner F., Selemenev V.F., Journal of Porous Materials, 2014, Vol. 21, P. 449. DOI: 10.1007/s10934-014-9791-x.
17. Karpov S.I., Roessner F., Selemenev V.F., Journal of Porous Materials, 2016, Vol. 23, No 2, P. 497. DOI: 10.1007/s10934-015-0103-x.
18. Matsumoto A., Langmuir, 2002, Vol. 18, pp. 4014-4019. DOI: 10.1021/la020004c.
19. Zhao X.S., Lu G.Q., J. Phys. Chem. B, 1998, Vol. 102, pp. 1556-1561. DOI: 10.1021/jp972788m
20. Hoffmann F., Cornelius M., Morell J., Fröba M., Angew. Chem. Int. Ed., 2006, No 45, pp. 3216-3251. DOI: 10.1002/anie.200503075.
21. Karpov S.I., Roessner F., Selemenev V.F., Belanova N.A. et al., Russian Journal of Physical Chemistry, 2013, Vol. 87, No 11, рр. 1917-1924. DOI: 10.1134/S0036024413110125.
22. Karpov S.I., Belanova N.A., Krizhanovskaya О.О., Nedosekina I.V. et al., Sorbtsionnyye i khromatograficheskiye protsessy, 2012, Vol. 12, No 5, рр. 752-763
23. Borodina E.V., Karpov S.I., Selemenev V.F., Schwieger W.et al., Microporous and Mesoporous Materials, 2015, Vol. 203, No 2, рр. 224-231.
24. Lisichkin G.V., Uspekhi khimii, 2006, Vol. 75, No 10, pp. 998-1017. DOI: https://doi.org/10.1070/RC2006v075n10ABEH003618.
25. Belanova N.A., Karpov S.I., Selemenev V.F., Roessner F. Patent RF, no. 2 491989, 2013.
26. Gol'tsov YU.A., Teoreticheskaya i eksperimental'naya khimiya, 1999, Vol. 35, No 35, pp. 190-193.
27. Greg C. Adsorbtsiya, udel'naya poverkhnost', poristost', M., Mir, 1984, 310 p.
28. Brunauer S., J. Am. Chem. Soc., 1938, Vol. 60, pp. 309-319. DOI: 10.1021/ja01269a023
29. Barrett E.P.T., J. Amer. Chem. Soc., 1951, Vol. 73, pp. 373-380. DOI: 10.1021/ja01145a126.
30. Zhao X.S., J. Phys. Chem. 1997, Vol. 101, pp. 6525-6531. DOI: 10.1021/jp971366+
31. Thommes M., Koehn R., Froeba M., Surface Science and Catalysis, 2002, Vol. 142, pp. 1695-1701.
32. Thommes M., Lu Ed.G.Q., Zhao X.S., Imperial College Press. Oxford, 2004, pp. 317-323.
33. Silvestre-Albero J., Sepulveda-Escribano A., Rodrıguez Reinoso F., Microporous and Mesoporous Materials, 2008, No 113, pp. 362-369. DOI:10.1016/j.micromeso.2007.11.037.
34. De Boer J.H. The Structure and Properties of Porous Materials. London, Butterworths, 1958, 68 p.
35. Ek S., Thermochimica Acta, 2001, Vol. 379, pp. 201-212. DOI: org/10.1016/S0040-6031(01)00618-9.
36. Kozlova S.A., Journal of Siberian Federal University. Chemistry, 2008, No 1, pp. 376-388.